Optical MEMS

Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays,...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (172 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993548340604498
ctrlnum (CKB)4100000010106055
(oapen)https://directory.doabooks.org/handle/20.500.12854/55304
(EXLCZ)994100000010106055
collection bib_alma
record_format marc
spelling Zamkotsian, Frederic auth
Optical MEMS
MDPI - Multidisciplinary Digital Publishing Institute 2019
1 electronic resource (172 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense.
English
stray light
input shaping
wavefront sensing
signal-to-noise ratio (SNR)
LC micro-lenses controlled electrically
infrared
intraoperative microscope
MEMS mirror
MLSSP
ocular aberrations
MEMS scanning micromirror
electrothermal actuation
electrothermal bimorph
open-loop control
wavelength dependent loss (WDL)
NIR fluorescence
infrared Fabry-Perot (FP) filtering
two-photon
resonant MEMS scanner
residual oscillation
3D measurement
parametric resonance
digital micromirror device
quality map
metalens
flame retardant 4 (FR4)
angle sensor
optical switch
metasurface
vibration noise
optical coherence tomography
spectrometer
reliability
quasistatic actuation
Huygens' metalens
confocal
large reflection variations
electrostatic
dual-mode liquid-crystal (LC) device
field of view (FOV)
scanning micromirror
fluorescence confocal
variable optical attenuator (VOA)
micro-electro-mechanical systems (MEMS)
microscanner
laser stripe width
polarization dependent loss (PDL)
fringe projection
2D Lissajous
usable scan range
laser stripe scanning
bio-optical imaging
MEMS scanning mirror
digital micromirror device (DMD)
Cu/W bimorph
echelle grating
achromatic
DMD chip
tunable fiber laser
programmable spectral filter
higher-order modes
electromagnetic actuator
3-03921-303-2
Xie, Huikai auth
language English
format eBook
author Zamkotsian, Frederic
spellingShingle Zamkotsian, Frederic
Optical MEMS
author_facet Zamkotsian, Frederic
Xie, Huikai
author_variant f z fz
author2 Xie, Huikai
author2_variant h x hx
author_sort Zamkotsian, Frederic
title Optical MEMS
title_full Optical MEMS
title_fullStr Optical MEMS
title_full_unstemmed Optical MEMS
title_auth Optical MEMS
title_new Optical MEMS
title_sort optical mems
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2019
physical 1 electronic resource (172 p.)
isbn 3-03921-304-0
3-03921-303-2
illustrated Not Illustrated
work_keys_str_mv AT zamkotsianfrederic opticalmems
AT xiehuikai opticalmems
status_str n
ids_txt_mv (CKB)4100000010106055
(oapen)https://directory.doabooks.org/handle/20.500.12854/55304
(EXLCZ)994100000010106055
carrierType_str_mv cr
is_hierarchy_title Optical MEMS
author2_original_writing_str_mv noLinkedField
_version_ 1787548669115891712
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04906nam-a2201021z--4500</leader><controlfield tag="001">993548340604498</controlfield><controlfield tag="005">20231214133538.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2019 xx |||||o ||| 0|eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-03921-304-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4100000010106055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/55304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994100000010106055</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zamkotsian, Frederic</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical MEMS</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (172 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stray light</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">input shaping</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wavefront sensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">signal-to-noise ratio (SNR)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">LC micro-lenses controlled electrically</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">infrared</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">intraoperative microscope</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS mirror</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MLSSP</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ocular aberrations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS scanning micromirror</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electrothermal actuation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electrothermal bimorph</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">open-loop control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wavelength dependent loss (WDL)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">NIR fluorescence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">infrared Fabry-Perot (FP) filtering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">two-photon</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">resonant MEMS scanner</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">residual oscillation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">3D measurement</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">parametric resonance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">digital micromirror device</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">quality map</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metalens</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">flame retardant 4 (FR4)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">angle sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">optical switch</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metasurface</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">vibration noise</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">optical coherence tomography</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spectrometer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">reliability</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">quasistatic actuation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Huygens' metalens</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">confocal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">large reflection variations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electrostatic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dual-mode liquid-crystal (LC) device</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">field of view (FOV)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">scanning micromirror</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fluorescence confocal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">variable optical attenuator (VOA)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">micro-electro-mechanical systems (MEMS)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microscanner</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">laser stripe width</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polarization dependent loss (PDL)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fringe projection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">2D Lissajous</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">usable scan range</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">laser stripe scanning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bio-optical imaging</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS scanning mirror</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">digital micromirror device (DMD)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cu/W bimorph</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">echelle grating</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">achromatic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DMD chip</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tunable fiber laser</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">programmable spectral filter</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">higher-order modes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electromagnetic actuator</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03921-303-2</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Huikai</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:57:19 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2020-02-01 22:26:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338814800004498&amp;Force_direct=true</subfield><subfield code="Z">5338814800004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338814800004498</subfield></datafield></record></collection>