Optical MEMS

Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays,...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (172 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04906nam-a2201021z--4500
001 993548340604498
005 20231214133538.0
006 m o d
007 cr|mn|---annan
008 202102s2019 xx |||||o ||| 0|eng d
020 |a 3-03921-304-0 
035 |a (CKB)4100000010106055 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/55304 
035 |a (EXLCZ)994100000010106055 
041 0 |a eng 
100 1 |a Zamkotsian, Frederic  |4 auth 
245 1 0 |a Optical MEMS 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (172 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense. 
546 |a English 
653 |a stray light 
653 |a input shaping 
653 |a wavefront sensing 
653 |a signal-to-noise ratio (SNR) 
653 |a LC micro-lenses controlled electrically 
653 |a infrared 
653 |a intraoperative microscope 
653 |a MEMS mirror 
653 |a MLSSP 
653 |a ocular aberrations 
653 |a MEMS scanning micromirror 
653 |a electrothermal actuation 
653 |a electrothermal bimorph 
653 |a open-loop control 
653 |a wavelength dependent loss (WDL) 
653 |a NIR fluorescence 
653 |a infrared Fabry-Perot (FP) filtering 
653 |a two-photon 
653 |a resonant MEMS scanner 
653 |a residual oscillation 
653 |a 3D measurement 
653 |a parametric resonance 
653 |a digital micromirror device 
653 |a quality map 
653 |a metalens 
653 |a flame retardant 4 (FR4) 
653 |a angle sensor 
653 |a optical switch 
653 |a metasurface 
653 |a vibration noise 
653 |a optical coherence tomography 
653 |a spectrometer 
653 |a reliability 
653 |a quasistatic actuation 
653 |a Huygens' metalens 
653 |a confocal 
653 |a large reflection variations 
653 |a electrostatic 
653 |a dual-mode liquid-crystal (LC) device 
653 |a field of view (FOV) 
653 |a scanning micromirror 
653 |a fluorescence confocal 
653 |a variable optical attenuator (VOA) 
653 |a micro-electro-mechanical systems (MEMS) 
653 |a microscanner 
653 |a laser stripe width 
653 |a polarization dependent loss (PDL) 
653 |a fringe projection 
653 |a 2D Lissajous 
653 |a usable scan range 
653 |a laser stripe scanning 
653 |a bio-optical imaging 
653 |a MEMS scanning mirror 
653 |a digital micromirror device (DMD) 
653 |a Cu/W bimorph 
653 |a echelle grating 
653 |a achromatic 
653 |a DMD chip 
653 |a tunable fiber laser 
653 |a programmable spectral filter 
653 |a higher-order modes 
653 |a electromagnetic actuator 
776 |z 3-03921-303-2 
700 1 |a Xie, Huikai  |4 auth 
906 |a BOOK 
ADM |b 2023-12-15 05:57:19 Europe/Vienna  |f system  |c marc21  |a 2020-02-01 22:26:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338814800004498&Force_direct=true  |Z 5338814800004498  |b Available  |8 5338814800004498