Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.

Saved in:
Bibliographic Details
Superior document:Integrated Environmental Technology Series
:
TeilnehmendeR:
Place / Publishing House:London : : IWA Publishing,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:Integrated Environmental Technology Series
Physical Description:1 online resource (244 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Cover
  • Contents
  • List of Contributors
  • Preface
  • Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage
  • Chapter 1: Introduction to wastewater treatment and energy recovery
  • 1.1 Introduction
  • 1.2 Process Fundamentals
  • 1.3 Building Blocks of NBs
  • 1.4 Environmental Remediation
  • 1.5 Wastewater Treatment
  • References
  • Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification
  • 2.1   Introduction
  • 2.2   Root Cause Behind Continuous Freshwater Shrinking
  • 2.3   Methodical Handling of Water Pollution
  • 2.3.1   Treatment technologies
  • 2.3.2   Major drawbacks of current water purification techniques
  • 2.4   Nanobiohybrid (NBIOH) Catalyst in Water Purification
  • 2.4.1   Use of nanoparticles in water purification and their problems
  • 2.4.2   Enzymes in water purification and their problems
  • 2.4.3   Use of NBIOH catalyst for water purification
  • 2.4.3.1   Capacity of NBIOH to treat water
  • 2.4.3.2   Problems associated with nanobiohybrid
  • 2.5   Conclusion
  • References
  • Chapter 3 : Biological production of nanoparticles and their application in photocatalysis
  • 3.1   Introduction
  • 3.2   Green Synthesis of Nanoparticles
  • 3.3   Biological Nanoparticles
  • 3.3.1   Plants
  • 3.3.2   Bacteria
  • 3.4   Fungi
  • 3.5   Algae
  • 3.6   Photocatalysis
  • 3.6.1   Batch degradation of organic pollutants using NPs
  • 3.6.2   Photobioreactors
  • 3.6.3   Nanobiohybrids
  • 3.7   Challenges
  • 3.7.1   Toxicity
  • 3.7.2   Nanoparticles detection
  • 3.7.3   Light accessibility
  • 3.8   Conclusion
  • References
  • Chapter 4 : Energy storage devices: batteries and supercapacitors
  • 4.1 Introduction
  • 4.2 Batteries: Principles and Operation
  • 4.2.1   Battery basics.
  • 4.2.1.1   Structure and components
  • 4.2.1.2   Electrochemical reactions in batteries
  • 4.2.2   Battery performance metrics
  • 4.2.2.1   Cell, module, and pack level
  • 4.2.2.2   Energy density
  • 4.2.2.3   Power density
  • 4.2.2.4   Specific energy (or gravimetric energy density)
  • 4.2.2.5   Specific power (or gravimetric power density)
  • 4.2.2.6   Cycle life
  • 4.2.2.7   Charge-discharge efficiency
  • 4.2.2.8   Self-discharge rate
  • 4.2.2.9   Operating temperature
  • 4.2.2.10   Impedance
  • 4.2.2.11   Round-trip efficiency
  • 4.3 Types of Batteries
  • 4.3.1   Nickel-cadmium batteries
  • 4.3.2   Lead-acid batteries
  • 4.3.2.1   Lead-acid battery composition
  • 4.3.2.2   Working principle of lead acid battery
  • 4.3.2.3   Market perspective
  • 4.3.3   Lithium-ion batteries
  • 4.3.3.1   Lithium-ion battery composition
  • 4.3.3.2   Working principle of lithium-ion battery
  • 4.3.3.3   Market perspective
  • 4.3.4   Sodium-ion batteries
  • 4.3.5   Zinc-air batteries
  • 4.4 Supercapacitors
  • 4.4.1   Principles and operations
  • 4.4.1.1   Electric double-layer capacitance
  • 4.4.1.2   Faradaic capacitance
  • 4.4.2   Supercapacitor electrode materials
  • 4.4.2.1   Electrode materials for EDLC
  • 4.4.2.2   Electrode materials for pseudocapacitor
  • 4.4.2.3   Electrode materials for hybrid supercapacitor
  • 4.5 Types of Supercapacitors
  • 4.5.1   Electrochemical double-layer capacitors
  • 4.5.2   Pseudocapacitors
  • 4.5.3   Hybrid capacitor
  • 4.6 Applications of Batteries and Supercapacitors
  • 4.6.1   Portable electronics and consumer applications
  • 4.6.2   Mobility of the future
  • 4.6.2.1   Electric vehicles and hybrid vehicles
  • 4.6.2.2   Aerospace applications
  • 4.6.3   New energy technologies
  • 4.6.3.1   Renewable energy integration.
  • 4.6.3.2   Grid-scale energy storage
  • 4.6.4   Defence application
  • 4.7 Conclusion
  • References
  • Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles
  • Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment
  • 5.1   Introduction
  • 5.2   Production of Nanobiohybrids
  • 5.2.1   Nanohybrids based on cellulose
  • 5.2.2   Nanohybrids based on gelatin
  • 5.2.3   Nanohybrids based on chitosan
  • 5.2.4   Nanohybrids based on pectin
  • 5.2.5   Nanohybrid based on silk protein
  • 5.3   Nanobiohybrid Applications in Water and Wastewater Treatment
  • 5.3.1   Nanobiohybrids as adsorbent
  • 5.3.2   Nanobiohybrids as catalyst (nanobiocatalysis)
  • 5.3.2.1   Polymeric nanobiocatalyst
  • 5.3.2.2   Silica-based nanobiocatalysts
  • 5.3.2.3   Carbon-based nanobiocatalysts
  • 5.3.2.4   Metal-based nanobiocatalysts
  • 5.4   Conclusion
  • References
  • Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation
  • 6.1   Introduction
  • 6.1.1   Production of nanoparticles
  • 6.1.2   Microbial nanohybrids
  • 6.1.3   Nanohybrid materials for wastewater treatment with respect to microbes
  • 6.2   Biosynthesis of Metal NPS with Different Microbes
  • 6.2.1   Bacteria
  • 6.2.2   Algae
  • 6.2.3   Fungi
  • 6.3   Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment
  • 6.3.1   Use of biogenic NPs to treat wastewater
  • 6.3.2   Biogenic inorganic NPs
  • 6.3.2.1   Bio-Fe and Bio-Mn NPs
  • 6.3.2.2   Bio-Pd NPs
  • 6.3.2.3   Bio-Au and Bio-Ag NPs
  • 6.3.2.4   Bio-bimetal NPs
  • 6.3.2.5   Composite Bio-Me NPs
  • 6.4   Conclusions
  • Acknowledgement
  • References
  • Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids
  • 7.1   Introduction
  • 7.2   Source of Pollutants.
  • 7.2.1   Ore extraction
  • 7.2.2   Electroplating
  • 7.2.3   Water pollution
  • 7.2.3.1   Pharmaceutical waste
  • 7.2.3.2   Dyes
  • 7.2.4   Radionuclides
  • 7.3   Sustainable Wastewater Treatment with Nanohybrids
  • 7.4   Magnetic Nanohybrids Materials for Water Contaminant Removal
  • 7.4.1   Preparation of magnetic nanohybrid materials
  • 7.4.2   Magnetic nanohybrid development
  • 7.4.3   Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials
  • 7.5   Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent
  • 7.6   Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst
  • 7.6.1   Carbon-based magnetic nanohybrid adsorbents
  • 7.6.1.1   Activated charcoal/biochar-based materials
  • 7.6.1.2   Carbon nanotubes
  • 7.6.1.3   Graphene-based nanoadsorbents
  • 7.6.1.4   Chitosan-based magnetic nanohybrid catalyst
  • 7.6.2   Metal-based magnetic nanohybrid catalyst
  • 7.6.2.1   Zeolites
  • 7.6.2.2   Multi-metals-based magnetic nanohybrid catalyst
  • 7.7   Future Prospectives with Challenges
  • Acknowledgements
  • References
  • Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids
  • 8.1 Introduction
  • 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells
  • 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids
  • 8.3.1   Favorable electrical conductivity of NMs
  • 8.3.1.1   Metal/metal oxide-based NPs and conductive carbon-based NMs
  • 8.3.1.2   Conductive organic nanopolymers
  • 8.3.2   Large specific surface area of NMs
  • 8.3.3   Photocatalysis capability of NMs
  • 8.3.3.1   Metal-based semiconductor NPs
  • 8.3.3.2   Carbon-based semiconductor NPs
  • 8.3.4   NMs stimulate production of cellular components related to electron transfer.
  • 8.3.4.1   Increased production of c-Cyts in the presence of NMs
  • 8.3.4.2   Increased EPS production in the presence of NMs
  • 8.3.5   Special functionalized NMs used for cytoprotection in engineered nanobiohybrids
  • 8.3.5.1   Biomimetic inorganic NPs
  • 8.3.5.2   Nano-hydrogels
  • 8.3.5.3   Hybrid coordination NMs
  • 8.3.5.4   Artificial nanoenzymes
  • 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems
  • 8.4.1   Internal bioaugmentation on an individual cell scale
  • 8.4.2   External bioaugmentation on an individual cell scale
  • 8.4.3   External bioaugmentation on the biofilm scale
  • 8.5 Future Directions
  • 8.5.1   Present challenges for nanobiohybrid development
  • 8.5.2   Outlook for nanobiohybrid development
  • Acknowledgments
  • References
  • Part 3: Environmental Remediation Using NBs
  • Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants
  • 9.1   Introduction
  • 9.2   Importance of Nanomaterials in the Nanobiohybrids
  • 9.3   Choice of Nanomaterial
  • 9.3.1   Metallic and metal oxide nanostructures
  • 9.3.2   Carbonaceous nanomaterials
  • 9.3.3   Quantum dots
  • 9.3.4   Polymers
  • 9.4   Nanobiohybrid Types: Based on Recognition Elements
  • 9.4.1   Proteins and peptides
  • 9.4.2   Nucleic acids
  • 9.4.3   Carbohydrates
  • 9.4.4   Whole cells
  • 9.5   Nanobiohybrid Sensor Types Based on Transduction Pathways
  • 9.5.1   Electrochemical nanobiohybrid sensors
  • 9.5.2   Optical nanobiohybrid sensors
  • 9.5.3   Magnetic nanobiohybrid sensors
  • 9.5.4   Gravimetric nanobiohybrid sensors
  • 9.5.5   Calorimetric nanobiohybrid sensors
  • 9.6   Conclusion
  • References
  • Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution
  • 10.1 Introduction.
  • 10.1.1   Need for environmental bioremediation.