Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.

Saved in:
Bibliographic Details
Superior document:Integrated Environmental Technology Series
:
TeilnehmendeR:
Place / Publishing House:London : : IWA Publishing,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:Integrated Environmental Technology Series
Physical Description:1 online resource (244 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 01577nam a22003853i 4500
001 993640771904498
005 20240220084505.0
006 m o d |
007 cr cnu||||||||
008 240220s2023 xx o ||||0 eng d
035 |a (CKB)5580000000694912 
035 |a (MiAaPQ)EBC30752876 
035 |a (Au-PeEL)EBL30752876 
035 |a (OCoLC)1423223666 
035 |a (EXLCZ)995580000000694912 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
082 0 |a 628.35 
100 1 |a Lens, Piet. 
245 1 0 |a Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery. 
250 |a 1st ed. 
264 1 |a London :  |b IWA Publishing,  |c 2023. 
264 4 |c ©2023. 
300 |a 1 online resource (244 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Integrated Environmental Technology Series 
588 |a Description based on publisher supplied metadata and other sources. 
505 0 |a Intro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1   Introduction -- 2.2   Root Cause Behind Continuous Freshwater Shrinking -- 2.3   Methodical Handling of Water Pollution -- 2.3.1   Treatment technologies -- 2.3.2   Major drawbacks of current water purification techniques -- 2.4   Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1   Use of nanoparticles in water purification and their problems -- 2.4.2   Enzymes in water purification and their problems -- 2.4.3   Use of NBIOH catalyst for water purification -- 2.4.3.1   Capacity of NBIOH to treat water -- 2.4.3.2   Problems associated with nanobiohybrid -- 2.5   Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1   Introduction -- 3.2   Green Synthesis of Nanoparticles -- 3.3   Biological Nanoparticles -- 3.3.1   Plants -- 3.3.2   Bacteria -- 3.4   Fungi -- 3.5   Algae -- 3.6   Photocatalysis -- 3.6.1   Batch degradation of organic pollutants using NPs -- 3.6.2   Photobioreactors -- 3.6.3   Nanobiohybrids -- 3.7   Challenges -- 3.7.1   Toxicity -- 3.7.2   Nanoparticles detection -- 3.7.3   Light accessibility -- 3.8   Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1   Battery basics. 
505 8 |a 4.2.1.1   Structure and components -- 4.2.1.2   Electrochemical reactions in batteries -- 4.2.2   Battery performance metrics -- 4.2.2.1   Cell, module, and pack level -- 4.2.2.2   Energy density -- 4.2.2.3   Power density -- 4.2.2.4   Specific energy (or gravimetric energy density) -- 4.2.2.5   Specific power (or gravimetric power density) -- 4.2.2.6   Cycle life -- 4.2.2.7   Charge-discharge efficiency -- 4.2.2.8   Self-discharge rate -- 4.2.2.9   Operating temperature -- 4.2.2.10   Impedance -- 4.2.2.11   Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1   Nickel-cadmium batteries -- 4.3.2   Lead-acid batteries -- 4.3.2.1   Lead-acid battery composition -- 4.3.2.2   Working principle of lead acid battery -- 4.3.2.3   Market perspective -- 4.3.3   Lithium-ion batteries -- 4.3.3.1   Lithium-ion battery composition -- 4.3.3.2   Working principle of lithium-ion battery -- 4.3.3.3   Market perspective -- 4.3.4   Sodium-ion batteries -- 4.3.5   Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1   Principles and operations -- 4.4.1.1   Electric double-layer capacitance -- 4.4.1.2   Faradaic capacitance -- 4.4.2   Supercapacitor electrode materials -- 4.4.2.1   Electrode materials for EDLC -- 4.4.2.2   Electrode materials for pseudocapacitor -- 4.4.2.3   Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1   Electrochemical double-layer capacitors -- 4.5.2   Pseudocapacitors -- 4.5.3   Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1   Portable electronics and consumer applications -- 4.6.2   Mobility of the future -- 4.6.2.1   Electric vehicles and hybrid vehicles -- 4.6.2.2   Aerospace applications -- 4.6.3   New energy technologies -- 4.6.3.1   Renewable energy integration. 
505 8 |a 4.6.3.2   Grid-scale energy storage -- 4.6.4   Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1   Introduction -- 5.2   Production of Nanobiohybrids -- 5.2.1   Nanohybrids based on cellulose -- 5.2.2   Nanohybrids based on gelatin -- 5.2.3   Nanohybrids based on chitosan -- 5.2.4   Nanohybrids based on pectin -- 5.2.5   Nanohybrid based on silk protein -- 5.3   Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1   Nanobiohybrids as adsorbent -- 5.3.2   Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1   Polymeric nanobiocatalyst -- 5.3.2.2   Silica-based nanobiocatalysts -- 5.3.2.3   Carbon-based nanobiocatalysts -- 5.3.2.4   Metal-based nanobiocatalysts -- 5.4   Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1   Introduction -- 6.1.1   Production of nanoparticles -- 6.1.2   Microbial nanohybrids -- 6.1.3   Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2   Biosynthesis of Metal NPS with Different Microbes -- 6.2.1   Bacteria -- 6.2.2   Algae -- 6.2.3   Fungi -- 6.3   Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1   Use of biogenic NPs to treat wastewater -- 6.3.2   Biogenic inorganic NPs -- 6.3.2.1   Bio-Fe and Bio-Mn NPs -- 6.3.2.2   Bio-Pd NPs -- 6.3.2.3   Bio-Au and Bio-Ag NPs -- 6.3.2.4   Bio-bimetal NPs -- 6.3.2.5   Composite Bio-Me NPs -- 6.4   Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1   Introduction -- 7.2   Source of Pollutants. 
505 8 |a 7.2.1   Ore extraction -- 7.2.2   Electroplating -- 7.2.3   Water pollution -- 7.2.3.1   Pharmaceutical waste -- 7.2.3.2   Dyes -- 7.2.4   Radionuclides -- 7.3   Sustainable Wastewater Treatment with Nanohybrids -- 7.4   Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1   Preparation of magnetic nanohybrid materials -- 7.4.2   Magnetic nanohybrid development -- 7.4.3   Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5   Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6   Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1   Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1   Activated charcoal/biochar-based materials -- 7.6.1.2   Carbon nanotubes -- 7.6.1.3   Graphene-based nanoadsorbents -- 7.6.1.4   Chitosan-based magnetic nanohybrid catalyst -- 7.6.2   Metal-based magnetic nanohybrid catalyst -- 7.6.2.1   Zeolites -- 7.6.2.2   Multi-metals-based magnetic nanohybrid catalyst -- 7.7   Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1   Favorable electrical conductivity of NMs -- 8.3.1.1   Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2   Conductive organic nanopolymers -- 8.3.2   Large specific surface area of NMs -- 8.3.3   Photocatalysis capability of NMs -- 8.3.3.1   Metal-based semiconductor NPs -- 8.3.3.2   Carbon-based semiconductor NPs -- 8.3.4   NMs stimulate production of cellular components related to electron transfer. 
505 8 |a 8.3.4.1   Increased production of c-Cyts in the presence of NMs -- 8.3.4.2   Increased EPS production in the presence of NMs -- 8.3.5   Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1   Biomimetic inorganic NPs -- 8.3.5.2   Nano-hydrogels -- 8.3.5.3   Hybrid coordination NMs -- 8.3.5.4   Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1   Internal bioaugmentation on an individual cell scale -- 8.4.2   External bioaugmentation on an individual cell scale -- 8.4.3   External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1   Present challenges for nanobiohybrid development -- 8.5.2   Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1   Introduction -- 9.2   Importance of Nanomaterials in the Nanobiohybrids -- 9.3   Choice of Nanomaterial -- 9.3.1   Metallic and metal oxide nanostructures -- 9.3.2   Carbonaceous nanomaterials -- 9.3.3   Quantum dots -- 9.3.4   Polymers -- 9.4   Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1   Proteins and peptides -- 9.4.2   Nucleic acids -- 9.4.3   Carbohydrates -- 9.4.4   Whole cells -- 9.5   Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1   Electrochemical nanobiohybrid sensors -- 9.5.2   Optical nanobiohybrid sensors -- 9.5.3   Magnetic nanobiohybrid sensors -- 9.5.4   Gravimetric nanobiohybrid sensors -- 9.5.5   Calorimetric nanobiohybrid sensors -- 9.6   Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction. 
505 8 |a 10.1.1   Need for environmental bioremediation. 
700 1 |a Uddandarao, Priyanka. 
776 |z 1-78906-358-2 
776 |z 1-78906-360-4 
830 0 |a Integrated Environmental Technology Series 
906 |a BOOK 
ADM |b 2024-03-27 01:12:00 Europe/Vienna  |f system  |c marc21  |a 2023-10-02 09:35:39 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5351961340004498&Force_direct=true  |Z 5351961340004498  |b Available  |8 5351961340004498