Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.

Saved in:
Bibliographic Details
Superior document:Integrated Environmental Technology Series
:
TeilnehmendeR:
Place / Publishing House:London : : IWA Publishing,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:Integrated Environmental Technology Series
Physical Description:1 online resource (244 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993640771904498
ctrlnum (CKB)5580000000694912
(MiAaPQ)EBC30752876
(Au-PeEL)EBL30752876
(OCoLC)1423223666
(EXLCZ)995580000000694912
collection bib_alma
record_format marc
spelling Lens, Piet.
Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
1st ed.
London : IWA Publishing, 2023.
©2023.
1 online resource (244 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Integrated Environmental Technology Series
Description based on publisher supplied metadata and other sources.
Intro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1   Introduction -- 2.2   Root Cause Behind Continuous Freshwater Shrinking -- 2.3   Methodical Handling of Water Pollution -- 2.3.1   Treatment technologies -- 2.3.2   Major drawbacks of current water purification techniques -- 2.4   Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1   Use of nanoparticles in water purification and their problems -- 2.4.2   Enzymes in water purification and their problems -- 2.4.3   Use of NBIOH catalyst for water purification -- 2.4.3.1   Capacity of NBIOH to treat water -- 2.4.3.2   Problems associated with nanobiohybrid -- 2.5   Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1   Introduction -- 3.2   Green Synthesis of Nanoparticles -- 3.3   Biological Nanoparticles -- 3.3.1   Plants -- 3.3.2   Bacteria -- 3.4   Fungi -- 3.5   Algae -- 3.6   Photocatalysis -- 3.6.1   Batch degradation of organic pollutants using NPs -- 3.6.2   Photobioreactors -- 3.6.3   Nanobiohybrids -- 3.7   Challenges -- 3.7.1   Toxicity -- 3.7.2   Nanoparticles detection -- 3.7.3   Light accessibility -- 3.8   Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1   Battery basics.
4.2.1.1   Structure and components -- 4.2.1.2   Electrochemical reactions in batteries -- 4.2.2   Battery performance metrics -- 4.2.2.1   Cell, module, and pack level -- 4.2.2.2   Energy density -- 4.2.2.3   Power density -- 4.2.2.4   Specific energy (or gravimetric energy density) -- 4.2.2.5   Specific power (or gravimetric power density) -- 4.2.2.6   Cycle life -- 4.2.2.7   Charge-discharge efficiency -- 4.2.2.8   Self-discharge rate -- 4.2.2.9   Operating temperature -- 4.2.2.10   Impedance -- 4.2.2.11   Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1   Nickel-cadmium batteries -- 4.3.2   Lead-acid batteries -- 4.3.2.1   Lead-acid battery composition -- 4.3.2.2   Working principle of lead acid battery -- 4.3.2.3   Market perspective -- 4.3.3   Lithium-ion batteries -- 4.3.3.1   Lithium-ion battery composition -- 4.3.3.2   Working principle of lithium-ion battery -- 4.3.3.3   Market perspective -- 4.3.4   Sodium-ion batteries -- 4.3.5   Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1   Principles and operations -- 4.4.1.1   Electric double-layer capacitance -- 4.4.1.2   Faradaic capacitance -- 4.4.2   Supercapacitor electrode materials -- 4.4.2.1   Electrode materials for EDLC -- 4.4.2.2   Electrode materials for pseudocapacitor -- 4.4.2.3   Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1   Electrochemical double-layer capacitors -- 4.5.2   Pseudocapacitors -- 4.5.3   Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1   Portable electronics and consumer applications -- 4.6.2   Mobility of the future -- 4.6.2.1   Electric vehicles and hybrid vehicles -- 4.6.2.2   Aerospace applications -- 4.6.3   New energy technologies -- 4.6.3.1   Renewable energy integration.
4.6.3.2   Grid-scale energy storage -- 4.6.4   Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1   Introduction -- 5.2   Production of Nanobiohybrids -- 5.2.1   Nanohybrids based on cellulose -- 5.2.2   Nanohybrids based on gelatin -- 5.2.3   Nanohybrids based on chitosan -- 5.2.4   Nanohybrids based on pectin -- 5.2.5   Nanohybrid based on silk protein -- 5.3   Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1   Nanobiohybrids as adsorbent -- 5.3.2   Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1   Polymeric nanobiocatalyst -- 5.3.2.2   Silica-based nanobiocatalysts -- 5.3.2.3   Carbon-based nanobiocatalysts -- 5.3.2.4   Metal-based nanobiocatalysts -- 5.4   Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1   Introduction -- 6.1.1   Production of nanoparticles -- 6.1.2   Microbial nanohybrids -- 6.1.3   Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2   Biosynthesis of Metal NPS with Different Microbes -- 6.2.1   Bacteria -- 6.2.2   Algae -- 6.2.3   Fungi -- 6.3   Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1   Use of biogenic NPs to treat wastewater -- 6.3.2   Biogenic inorganic NPs -- 6.3.2.1   Bio-Fe and Bio-Mn NPs -- 6.3.2.2   Bio-Pd NPs -- 6.3.2.3   Bio-Au and Bio-Ag NPs -- 6.3.2.4   Bio-bimetal NPs -- 6.3.2.5   Composite Bio-Me NPs -- 6.4   Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1   Introduction -- 7.2   Source of Pollutants.
7.2.1   Ore extraction -- 7.2.2   Electroplating -- 7.2.3   Water pollution -- 7.2.3.1   Pharmaceutical waste -- 7.2.3.2   Dyes -- 7.2.4   Radionuclides -- 7.3   Sustainable Wastewater Treatment with Nanohybrids -- 7.4   Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1   Preparation of magnetic nanohybrid materials -- 7.4.2   Magnetic nanohybrid development -- 7.4.3   Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5   Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6   Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1   Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1   Activated charcoal/biochar-based materials -- 7.6.1.2   Carbon nanotubes -- 7.6.1.3   Graphene-based nanoadsorbents -- 7.6.1.4   Chitosan-based magnetic nanohybrid catalyst -- 7.6.2   Metal-based magnetic nanohybrid catalyst -- 7.6.2.1   Zeolites -- 7.6.2.2   Multi-metals-based magnetic nanohybrid catalyst -- 7.7   Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1   Favorable electrical conductivity of NMs -- 8.3.1.1   Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2   Conductive organic nanopolymers -- 8.3.2   Large specific surface area of NMs -- 8.3.3   Photocatalysis capability of NMs -- 8.3.3.1   Metal-based semiconductor NPs -- 8.3.3.2   Carbon-based semiconductor NPs -- 8.3.4   NMs stimulate production of cellular components related to electron transfer.
8.3.4.1   Increased production of c-Cyts in the presence of NMs -- 8.3.4.2   Increased EPS production in the presence of NMs -- 8.3.5   Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1   Biomimetic inorganic NPs -- 8.3.5.2   Nano-hydrogels -- 8.3.5.3   Hybrid coordination NMs -- 8.3.5.4   Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1   Internal bioaugmentation on an individual cell scale -- 8.4.2   External bioaugmentation on an individual cell scale -- 8.4.3   External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1   Present challenges for nanobiohybrid development -- 8.5.2   Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1   Introduction -- 9.2   Importance of Nanomaterials in the Nanobiohybrids -- 9.3   Choice of Nanomaterial -- 9.3.1   Metallic and metal oxide nanostructures -- 9.3.2   Carbonaceous nanomaterials -- 9.3.3   Quantum dots -- 9.3.4   Polymers -- 9.4   Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1   Proteins and peptides -- 9.4.2   Nucleic acids -- 9.4.3   Carbohydrates -- 9.4.4   Whole cells -- 9.5   Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1   Electrochemical nanobiohybrid sensors -- 9.5.2   Optical nanobiohybrid sensors -- 9.5.3   Magnetic nanobiohybrid sensors -- 9.5.4   Gravimetric nanobiohybrid sensors -- 9.5.5   Calorimetric nanobiohybrid sensors -- 9.6   Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction.
10.1.1   Need for environmental bioremediation.
Uddandarao, Priyanka.
1-78906-358-2
1-78906-360-4
language English
format eBook
author Lens, Piet.
spellingShingle Lens, Piet.
Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
Integrated Environmental Technology Series
Intro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1   Introduction -- 2.2   Root Cause Behind Continuous Freshwater Shrinking -- 2.3   Methodical Handling of Water Pollution -- 2.3.1   Treatment technologies -- 2.3.2   Major drawbacks of current water purification techniques -- 2.4   Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1   Use of nanoparticles in water purification and their problems -- 2.4.2   Enzymes in water purification and their problems -- 2.4.3   Use of NBIOH catalyst for water purification -- 2.4.3.1   Capacity of NBIOH to treat water -- 2.4.3.2   Problems associated with nanobiohybrid -- 2.5   Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1   Introduction -- 3.2   Green Synthesis of Nanoparticles -- 3.3   Biological Nanoparticles -- 3.3.1   Plants -- 3.3.2   Bacteria -- 3.4   Fungi -- 3.5   Algae -- 3.6   Photocatalysis -- 3.6.1   Batch degradation of organic pollutants using NPs -- 3.6.2   Photobioreactors -- 3.6.3   Nanobiohybrids -- 3.7   Challenges -- 3.7.1   Toxicity -- 3.7.2   Nanoparticles detection -- 3.7.3   Light accessibility -- 3.8   Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1   Battery basics.
4.2.1.1   Structure and components -- 4.2.1.2   Electrochemical reactions in batteries -- 4.2.2   Battery performance metrics -- 4.2.2.1   Cell, module, and pack level -- 4.2.2.2   Energy density -- 4.2.2.3   Power density -- 4.2.2.4   Specific energy (or gravimetric energy density) -- 4.2.2.5   Specific power (or gravimetric power density) -- 4.2.2.6   Cycle life -- 4.2.2.7   Charge-discharge efficiency -- 4.2.2.8   Self-discharge rate -- 4.2.2.9   Operating temperature -- 4.2.2.10   Impedance -- 4.2.2.11   Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1   Nickel-cadmium batteries -- 4.3.2   Lead-acid batteries -- 4.3.2.1   Lead-acid battery composition -- 4.3.2.2   Working principle of lead acid battery -- 4.3.2.3   Market perspective -- 4.3.3   Lithium-ion batteries -- 4.3.3.1   Lithium-ion battery composition -- 4.3.3.2   Working principle of lithium-ion battery -- 4.3.3.3   Market perspective -- 4.3.4   Sodium-ion batteries -- 4.3.5   Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1   Principles and operations -- 4.4.1.1   Electric double-layer capacitance -- 4.4.1.2   Faradaic capacitance -- 4.4.2   Supercapacitor electrode materials -- 4.4.2.1   Electrode materials for EDLC -- 4.4.2.2   Electrode materials for pseudocapacitor -- 4.4.2.3   Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1   Electrochemical double-layer capacitors -- 4.5.2   Pseudocapacitors -- 4.5.3   Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1   Portable electronics and consumer applications -- 4.6.2   Mobility of the future -- 4.6.2.1   Electric vehicles and hybrid vehicles -- 4.6.2.2   Aerospace applications -- 4.6.3   New energy technologies -- 4.6.3.1   Renewable energy integration.
4.6.3.2   Grid-scale energy storage -- 4.6.4   Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1   Introduction -- 5.2   Production of Nanobiohybrids -- 5.2.1   Nanohybrids based on cellulose -- 5.2.2   Nanohybrids based on gelatin -- 5.2.3   Nanohybrids based on chitosan -- 5.2.4   Nanohybrids based on pectin -- 5.2.5   Nanohybrid based on silk protein -- 5.3   Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1   Nanobiohybrids as adsorbent -- 5.3.2   Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1   Polymeric nanobiocatalyst -- 5.3.2.2   Silica-based nanobiocatalysts -- 5.3.2.3   Carbon-based nanobiocatalysts -- 5.3.2.4   Metal-based nanobiocatalysts -- 5.4   Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1   Introduction -- 6.1.1   Production of nanoparticles -- 6.1.2   Microbial nanohybrids -- 6.1.3   Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2   Biosynthesis of Metal NPS with Different Microbes -- 6.2.1   Bacteria -- 6.2.2   Algae -- 6.2.3   Fungi -- 6.3   Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1   Use of biogenic NPs to treat wastewater -- 6.3.2   Biogenic inorganic NPs -- 6.3.2.1   Bio-Fe and Bio-Mn NPs -- 6.3.2.2   Bio-Pd NPs -- 6.3.2.3   Bio-Au and Bio-Ag NPs -- 6.3.2.4   Bio-bimetal NPs -- 6.3.2.5   Composite Bio-Me NPs -- 6.4   Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1   Introduction -- 7.2   Source of Pollutants.
7.2.1   Ore extraction -- 7.2.2   Electroplating -- 7.2.3   Water pollution -- 7.2.3.1   Pharmaceutical waste -- 7.2.3.2   Dyes -- 7.2.4   Radionuclides -- 7.3   Sustainable Wastewater Treatment with Nanohybrids -- 7.4   Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1   Preparation of magnetic nanohybrid materials -- 7.4.2   Magnetic nanohybrid development -- 7.4.3   Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5   Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6   Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1   Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1   Activated charcoal/biochar-based materials -- 7.6.1.2   Carbon nanotubes -- 7.6.1.3   Graphene-based nanoadsorbents -- 7.6.1.4   Chitosan-based magnetic nanohybrid catalyst -- 7.6.2   Metal-based magnetic nanohybrid catalyst -- 7.6.2.1   Zeolites -- 7.6.2.2   Multi-metals-based magnetic nanohybrid catalyst -- 7.7   Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1   Favorable electrical conductivity of NMs -- 8.3.1.1   Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2   Conductive organic nanopolymers -- 8.3.2   Large specific surface area of NMs -- 8.3.3   Photocatalysis capability of NMs -- 8.3.3.1   Metal-based semiconductor NPs -- 8.3.3.2   Carbon-based semiconductor NPs -- 8.3.4   NMs stimulate production of cellular components related to electron transfer.
8.3.4.1   Increased production of c-Cyts in the presence of NMs -- 8.3.4.2   Increased EPS production in the presence of NMs -- 8.3.5   Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1   Biomimetic inorganic NPs -- 8.3.5.2   Nano-hydrogels -- 8.3.5.3   Hybrid coordination NMs -- 8.3.5.4   Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1   Internal bioaugmentation on an individual cell scale -- 8.4.2   External bioaugmentation on an individual cell scale -- 8.4.3   External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1   Present challenges for nanobiohybrid development -- 8.5.2   Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1   Introduction -- 9.2   Importance of Nanomaterials in the Nanobiohybrids -- 9.3   Choice of Nanomaterial -- 9.3.1   Metallic and metal oxide nanostructures -- 9.3.2   Carbonaceous nanomaterials -- 9.3.3   Quantum dots -- 9.3.4   Polymers -- 9.4   Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1   Proteins and peptides -- 9.4.2   Nucleic acids -- 9.4.3   Carbohydrates -- 9.4.4   Whole cells -- 9.5   Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1   Electrochemical nanobiohybrid sensors -- 9.5.2   Optical nanobiohybrid sensors -- 9.5.3   Magnetic nanobiohybrid sensors -- 9.5.4   Gravimetric nanobiohybrid sensors -- 9.5.5   Calorimetric nanobiohybrid sensors -- 9.6   Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction.
10.1.1   Need for environmental bioremediation.
author_facet Lens, Piet.
Uddandarao, Priyanka.
author_variant p l pl
author2 Uddandarao, Priyanka.
author2_variant p u pu
author2_role TeilnehmendeR
author_sort Lens, Piet.
title Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
title_full Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
title_fullStr Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
title_full_unstemmed Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
title_auth Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
title_new Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
title_sort nanobiohybrids for advanced wastewater treatment and energy recovery.
series Integrated Environmental Technology Series
series2 Integrated Environmental Technology Series
publisher IWA Publishing,
publishDate 2023
physical 1 online resource (244 pages)
edition 1st ed.
contents Intro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1   Introduction -- 2.2   Root Cause Behind Continuous Freshwater Shrinking -- 2.3   Methodical Handling of Water Pollution -- 2.3.1   Treatment technologies -- 2.3.2   Major drawbacks of current water purification techniques -- 2.4   Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1   Use of nanoparticles in water purification and their problems -- 2.4.2   Enzymes in water purification and their problems -- 2.4.3   Use of NBIOH catalyst for water purification -- 2.4.3.1   Capacity of NBIOH to treat water -- 2.4.3.2   Problems associated with nanobiohybrid -- 2.5   Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1   Introduction -- 3.2   Green Synthesis of Nanoparticles -- 3.3   Biological Nanoparticles -- 3.3.1   Plants -- 3.3.2   Bacteria -- 3.4   Fungi -- 3.5   Algae -- 3.6   Photocatalysis -- 3.6.1   Batch degradation of organic pollutants using NPs -- 3.6.2   Photobioreactors -- 3.6.3   Nanobiohybrids -- 3.7   Challenges -- 3.7.1   Toxicity -- 3.7.2   Nanoparticles detection -- 3.7.3   Light accessibility -- 3.8   Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1   Battery basics.
4.2.1.1   Structure and components -- 4.2.1.2   Electrochemical reactions in batteries -- 4.2.2   Battery performance metrics -- 4.2.2.1   Cell, module, and pack level -- 4.2.2.2   Energy density -- 4.2.2.3   Power density -- 4.2.2.4   Specific energy (or gravimetric energy density) -- 4.2.2.5   Specific power (or gravimetric power density) -- 4.2.2.6   Cycle life -- 4.2.2.7   Charge-discharge efficiency -- 4.2.2.8   Self-discharge rate -- 4.2.2.9   Operating temperature -- 4.2.2.10   Impedance -- 4.2.2.11   Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1   Nickel-cadmium batteries -- 4.3.2   Lead-acid batteries -- 4.3.2.1   Lead-acid battery composition -- 4.3.2.2   Working principle of lead acid battery -- 4.3.2.3   Market perspective -- 4.3.3   Lithium-ion batteries -- 4.3.3.1   Lithium-ion battery composition -- 4.3.3.2   Working principle of lithium-ion battery -- 4.3.3.3   Market perspective -- 4.3.4   Sodium-ion batteries -- 4.3.5   Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1   Principles and operations -- 4.4.1.1   Electric double-layer capacitance -- 4.4.1.2   Faradaic capacitance -- 4.4.2   Supercapacitor electrode materials -- 4.4.2.1   Electrode materials for EDLC -- 4.4.2.2   Electrode materials for pseudocapacitor -- 4.4.2.3   Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1   Electrochemical double-layer capacitors -- 4.5.2   Pseudocapacitors -- 4.5.3   Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1   Portable electronics and consumer applications -- 4.6.2   Mobility of the future -- 4.6.2.1   Electric vehicles and hybrid vehicles -- 4.6.2.2   Aerospace applications -- 4.6.3   New energy technologies -- 4.6.3.1   Renewable energy integration.
4.6.3.2   Grid-scale energy storage -- 4.6.4   Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1   Introduction -- 5.2   Production of Nanobiohybrids -- 5.2.1   Nanohybrids based on cellulose -- 5.2.2   Nanohybrids based on gelatin -- 5.2.3   Nanohybrids based on chitosan -- 5.2.4   Nanohybrids based on pectin -- 5.2.5   Nanohybrid based on silk protein -- 5.3   Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1   Nanobiohybrids as adsorbent -- 5.3.2   Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1   Polymeric nanobiocatalyst -- 5.3.2.2   Silica-based nanobiocatalysts -- 5.3.2.3   Carbon-based nanobiocatalysts -- 5.3.2.4   Metal-based nanobiocatalysts -- 5.4   Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1   Introduction -- 6.1.1   Production of nanoparticles -- 6.1.2   Microbial nanohybrids -- 6.1.3   Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2   Biosynthesis of Metal NPS with Different Microbes -- 6.2.1   Bacteria -- 6.2.2   Algae -- 6.2.3   Fungi -- 6.3   Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1   Use of biogenic NPs to treat wastewater -- 6.3.2   Biogenic inorganic NPs -- 6.3.2.1   Bio-Fe and Bio-Mn NPs -- 6.3.2.2   Bio-Pd NPs -- 6.3.2.3   Bio-Au and Bio-Ag NPs -- 6.3.2.4   Bio-bimetal NPs -- 6.3.2.5   Composite Bio-Me NPs -- 6.4   Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1   Introduction -- 7.2   Source of Pollutants.
7.2.1   Ore extraction -- 7.2.2   Electroplating -- 7.2.3   Water pollution -- 7.2.3.1   Pharmaceutical waste -- 7.2.3.2   Dyes -- 7.2.4   Radionuclides -- 7.3   Sustainable Wastewater Treatment with Nanohybrids -- 7.4   Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1   Preparation of magnetic nanohybrid materials -- 7.4.2   Magnetic nanohybrid development -- 7.4.3   Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5   Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6   Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1   Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1   Activated charcoal/biochar-based materials -- 7.6.1.2   Carbon nanotubes -- 7.6.1.3   Graphene-based nanoadsorbents -- 7.6.1.4   Chitosan-based magnetic nanohybrid catalyst -- 7.6.2   Metal-based magnetic nanohybrid catalyst -- 7.6.2.1   Zeolites -- 7.6.2.2   Multi-metals-based magnetic nanohybrid catalyst -- 7.7   Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1   Favorable electrical conductivity of NMs -- 8.3.1.1   Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2   Conductive organic nanopolymers -- 8.3.2   Large specific surface area of NMs -- 8.3.3   Photocatalysis capability of NMs -- 8.3.3.1   Metal-based semiconductor NPs -- 8.3.3.2   Carbon-based semiconductor NPs -- 8.3.4   NMs stimulate production of cellular components related to electron transfer.
8.3.4.1   Increased production of c-Cyts in the presence of NMs -- 8.3.4.2   Increased EPS production in the presence of NMs -- 8.3.5   Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1   Biomimetic inorganic NPs -- 8.3.5.2   Nano-hydrogels -- 8.3.5.3   Hybrid coordination NMs -- 8.3.5.4   Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1   Internal bioaugmentation on an individual cell scale -- 8.4.2   External bioaugmentation on an individual cell scale -- 8.4.3   External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1   Present challenges for nanobiohybrid development -- 8.5.2   Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1   Introduction -- 9.2   Importance of Nanomaterials in the Nanobiohybrids -- 9.3   Choice of Nanomaterial -- 9.3.1   Metallic and metal oxide nanostructures -- 9.3.2   Carbonaceous nanomaterials -- 9.3.3   Quantum dots -- 9.3.4   Polymers -- 9.4   Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1   Proteins and peptides -- 9.4.2   Nucleic acids -- 9.4.3   Carbohydrates -- 9.4.4   Whole cells -- 9.5   Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1   Electrochemical nanobiohybrid sensors -- 9.5.2   Optical nanobiohybrid sensors -- 9.5.3   Magnetic nanobiohybrid sensors -- 9.5.4   Gravimetric nanobiohybrid sensors -- 9.5.5   Calorimetric nanobiohybrid sensors -- 9.6   Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction.
10.1.1   Need for environmental bioremediation.
isbn 1-78906-358-2
1-78906-360-4
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 628 - Sanitary & municipal engineering
dewey-full 628.35
dewey-sort 3628.35
dewey-raw 628.35
dewey-search 628.35
oclc_num 1423223666
work_keys_str_mv AT lenspiet nanobiohybridsforadvancedwastewatertreatmentandenergyrecovery
AT uddandaraopriyanka nanobiohybridsforadvancedwastewatertreatmentandenergyrecovery
status_str n
ids_txt_mv (CKB)5580000000694912
(MiAaPQ)EBC30752876
(Au-PeEL)EBL30752876
(OCoLC)1423223666
(EXLCZ)995580000000694912
carrierType_str_mv cr
hierarchy_parent_title Integrated Environmental Technology Series
is_hierarchy_title Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.
container_title Integrated Environmental Technology Series
author2_original_writing_str_mv noLinkedField
_version_ 1796653741666992128
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01577nam a22003853i 4500</leader><controlfield tag="001">993640771904498</controlfield><controlfield tag="005">20240220084505.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240220s2023 xx o ||||0 eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5580000000694912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC30752876</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30752876</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1423223666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995580000000694912</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">628.35</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lens, Piet.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London :</subfield><subfield code="b">IWA Publishing,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (244 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Integrated Environmental Technology Series</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1   Introduction -- 2.2   Root Cause Behind Continuous Freshwater Shrinking -- 2.3   Methodical Handling of Water Pollution -- 2.3.1   Treatment technologies -- 2.3.2   Major drawbacks of current water purification techniques -- 2.4   Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1   Use of nanoparticles in water purification and their problems -- 2.4.2   Enzymes in water purification and their problems -- 2.4.3   Use of NBIOH catalyst for water purification -- 2.4.3.1   Capacity of NBIOH to treat water -- 2.4.3.2   Problems associated with nanobiohybrid -- 2.5   Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1   Introduction -- 3.2   Green Synthesis of Nanoparticles -- 3.3   Biological Nanoparticles -- 3.3.1   Plants -- 3.3.2   Bacteria -- 3.4   Fungi -- 3.5   Algae -- 3.6   Photocatalysis -- 3.6.1   Batch degradation of organic pollutants using NPs -- 3.6.2   Photobioreactors -- 3.6.3   Nanobiohybrids -- 3.7   Challenges -- 3.7.1   Toxicity -- 3.7.2   Nanoparticles detection -- 3.7.3   Light accessibility -- 3.8   Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1   Battery basics.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.1.1   Structure and components -- 4.2.1.2   Electrochemical reactions in batteries -- 4.2.2   Battery performance metrics -- 4.2.2.1   Cell, module, and pack level -- 4.2.2.2   Energy density -- 4.2.2.3   Power density -- 4.2.2.4   Specific energy (or gravimetric energy density) -- 4.2.2.5   Specific power (or gravimetric power density) -- 4.2.2.6   Cycle life -- 4.2.2.7   Charge-discharge efficiency -- 4.2.2.8   Self-discharge rate -- 4.2.2.9   Operating temperature -- 4.2.2.10   Impedance -- 4.2.2.11   Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1   Nickel-cadmium batteries -- 4.3.2   Lead-acid batteries -- 4.3.2.1   Lead-acid battery composition -- 4.3.2.2   Working principle of lead acid battery -- 4.3.2.3   Market perspective -- 4.3.3   Lithium-ion batteries -- 4.3.3.1   Lithium-ion battery composition -- 4.3.3.2   Working principle of lithium-ion battery -- 4.3.3.3   Market perspective -- 4.3.4   Sodium-ion batteries -- 4.3.5   Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1   Principles and operations -- 4.4.1.1   Electric double-layer capacitance -- 4.4.1.2   Faradaic capacitance -- 4.4.2   Supercapacitor electrode materials -- 4.4.2.1   Electrode materials for EDLC -- 4.4.2.2   Electrode materials for pseudocapacitor -- 4.4.2.3   Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1   Electrochemical double-layer capacitors -- 4.5.2   Pseudocapacitors -- 4.5.3   Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1   Portable electronics and consumer applications -- 4.6.2   Mobility of the future -- 4.6.2.1   Electric vehicles and hybrid vehicles -- 4.6.2.2   Aerospace applications -- 4.6.3   New energy technologies -- 4.6.3.1   Renewable energy integration.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6.3.2   Grid-scale energy storage -- 4.6.4   Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1   Introduction -- 5.2   Production of Nanobiohybrids -- 5.2.1   Nanohybrids based on cellulose -- 5.2.2   Nanohybrids based on gelatin -- 5.2.3   Nanohybrids based on chitosan -- 5.2.4   Nanohybrids based on pectin -- 5.2.5   Nanohybrid based on silk protein -- 5.3   Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1   Nanobiohybrids as adsorbent -- 5.3.2   Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1   Polymeric nanobiocatalyst -- 5.3.2.2   Silica-based nanobiocatalysts -- 5.3.2.3   Carbon-based nanobiocatalysts -- 5.3.2.4   Metal-based nanobiocatalysts -- 5.4   Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1   Introduction -- 6.1.1   Production of nanoparticles -- 6.1.2   Microbial nanohybrids -- 6.1.3   Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2   Biosynthesis of Metal NPS with Different Microbes -- 6.2.1   Bacteria -- 6.2.2   Algae -- 6.2.3   Fungi -- 6.3   Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1   Use of biogenic NPs to treat wastewater -- 6.3.2   Biogenic inorganic NPs -- 6.3.2.1   Bio-Fe and Bio-Mn NPs -- 6.3.2.2   Bio-Pd NPs -- 6.3.2.3   Bio-Au and Bio-Ag NPs -- 6.3.2.4   Bio-bimetal NPs -- 6.3.2.5   Composite Bio-Me NPs -- 6.4   Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1   Introduction -- 7.2   Source of Pollutants.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2.1   Ore extraction -- 7.2.2   Electroplating -- 7.2.3   Water pollution -- 7.2.3.1   Pharmaceutical waste -- 7.2.3.2   Dyes -- 7.2.4   Radionuclides -- 7.3   Sustainable Wastewater Treatment with Nanohybrids -- 7.4   Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1   Preparation of magnetic nanohybrid materials -- 7.4.2   Magnetic nanohybrid development -- 7.4.3   Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5   Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6   Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1   Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1   Activated charcoal/biochar-based materials -- 7.6.1.2   Carbon nanotubes -- 7.6.1.3   Graphene-based nanoadsorbents -- 7.6.1.4   Chitosan-based magnetic nanohybrid catalyst -- 7.6.2   Metal-based magnetic nanohybrid catalyst -- 7.6.2.1   Zeolites -- 7.6.2.2   Multi-metals-based magnetic nanohybrid catalyst -- 7.7   Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1   Favorable electrical conductivity of NMs -- 8.3.1.1   Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2   Conductive organic nanopolymers -- 8.3.2   Large specific surface area of NMs -- 8.3.3   Photocatalysis capability of NMs -- 8.3.3.1   Metal-based semiconductor NPs -- 8.3.3.2   Carbon-based semiconductor NPs -- 8.3.4   NMs stimulate production of cellular components related to electron transfer.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.3.4.1   Increased production of c-Cyts in the presence of NMs -- 8.3.4.2   Increased EPS production in the presence of NMs -- 8.3.5   Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1   Biomimetic inorganic NPs -- 8.3.5.2   Nano-hydrogels -- 8.3.5.3   Hybrid coordination NMs -- 8.3.5.4   Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1   Internal bioaugmentation on an individual cell scale -- 8.4.2   External bioaugmentation on an individual cell scale -- 8.4.3   External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1   Present challenges for nanobiohybrid development -- 8.5.2   Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1   Introduction -- 9.2   Importance of Nanomaterials in the Nanobiohybrids -- 9.3   Choice of Nanomaterial -- 9.3.1   Metallic and metal oxide nanostructures -- 9.3.2   Carbonaceous nanomaterials -- 9.3.3   Quantum dots -- 9.3.4   Polymers -- 9.4   Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1   Proteins and peptides -- 9.4.2   Nucleic acids -- 9.4.3   Carbohydrates -- 9.4.4   Whole cells -- 9.5   Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1   Electrochemical nanobiohybrid sensors -- 9.5.2   Optical nanobiohybrid sensors -- 9.5.3   Magnetic nanobiohybrid sensors -- 9.5.4   Gravimetric nanobiohybrid sensors -- 9.5.5   Calorimetric nanobiohybrid sensors -- 9.6   Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.1.1   Need for environmental bioremediation.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uddandarao, Priyanka.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">1-78906-358-2</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">1-78906-360-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Integrated Environmental Technology Series</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-03-27 01:12:00 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2023-10-02 09:35:39 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5351961340004498&amp;Force_direct=true</subfield><subfield code="Z">5351961340004498</subfield><subfield code="b">Available</subfield><subfield code="8">5351961340004498</subfield></datafield></record></collection>