Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.

Saved in:
Bibliographic Details
Superior document:Environmental Contamination Remediation and Management Series.
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2023.
©2024.
Year of Publication:2023
Edition:First edition.
Language:English
Series:Environmental contamination remediation and management.
Physical Description:1 online resource (675 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Reviewers
  • Contents
  • Contributors
  • Acronyms and Symbols
  • 1 Complexities of Petroleum Hydrocarbon Contaminated Sites
  • 1.1 Introduction
  • 1.2 Problem Recognition and Regulatory Environment
  • 1.2.1 Problem recognition-The Case of Large Oil Spills
  • 1.2.2 Regulatory Frameworks
  • 1.2.3 Toward Improved Management and Regulation of PHC-Contaminated Sites
  • 1.3 Multiphase Flow Mechanics
  • 1.4 Complexities Associated with PHC NAPL Composition
  • 1.5 Geological and Hydrogeological Concepts that Help Tackle LNAPL Management Challenges
  • 1.6 Summary
  • References
  • 2 Historical Development of Constitutive Relations for Addressing Subsurface LNAPL Contamination
  • 2.1 Introduction
  • 2.2 Recognition of Health Effects from LNAPLs in the Subsurface
  • 2.3 Predicting Subsurface LNAPL Behavior: Early Developments
  • 2.4 The Parker et al. (1987) Nonhysteretic Model
  • 2.5 Hysteretic Model
  • 2.6 Predicting LNAPL Saturations, Volumes, and Transmissivity from Well Levels
  • 2.7 Incorporating Free, Residual, and Entrapped LNAPL Fractions
  • 2.8 Recent Developments. The Lenhard et al. (2017) Model
  • 2.9 Layered Porous Media
  • 2.10 Summary and Steps Forward
  • References
  • 3 Estimating LNAPL Volumes in Unimodal and Multimodal Subsurface Pore Systems
  • 3.1 Introduction
  • 3.2 Pore Structures
  • 3.3 Water and LNAPL Saturations
  • 3.4 Capillary Pressure-Saturation Curves
  • 3.5 Estimating LNAPL Saturations and Volumes from In-Well Thickness
  • 3.6 Conclusions
  • References
  • 4 The Application of Sequence Stratigraphy to the Investigation and Remediation of LNAPL-Contaminated Sites
  • 4.1 Introduction
  • 4.1.1 The Challenge of Subsurface Heterogeneity on LNAPL Remediation
  • 4.1.2 Application of Facies Models for Predicting Subsurface Heterogeneity
  • 4.2 Lithostratigraphy Versus Chronostratigraphy.
  • 4.2.1 The Pitfalls of Traditional Correlation Methods
  • 4.2.2 Chronostratigraphy-The Preferred Approach to Stratigraphic Correlation
  • 4.3 Sequence Stratigraphy-A New Paradigm for the Environmental Industry
  • 4.4 Methodology
  • 4.4.1 Application of Sequence Stratigraphic Principles at Contaminated Sites
  • 4.4.2 Evaluation of Geologic Setting and Accommodation
  • 4.4.3 Analysis of Lithologic Data
  • 4.4.4 Facies Architecture Analysis
  • 4.4.5 Correlation Between Boreholes
  • 4.4.6 Integration with Hydrogeology and Chemistry Data
  • 4.5 Case Study: Using Sequence Stratigraphy to Inform Remedial Decision-Making at a Geologically Complex LNAPL-Impacted Site
  • 4.5.1 Site Background
  • 4.5.2 Application of Sequence Stratigraphy
  • 4.6 Summary
  • 4.7 Future Directions
  • References
  • 5 Natural Source Zone Depletion of Petroleum Hydrocarbon NAPL
  • 5.1 Overview of NSZD Process
  • 5.2 Measuring NSZD Rates
  • 5.2.1 Soil Gas Methods
  • 5.2.2 Soil Temperature Methods
  • 5.2.3 Petroleum NAPL Chemical Composition Change
  • 5.2.4 Emerging Science and Future Vision
  • 5.2.5 Summary and Conclusion
  • References
  • 6 Petroleum Vapor Intrusion
  • 6.1 Introduction
  • 6.2 Fate and Transport of Petroleum Vapors in the Subsurface
  • 6.2.1 Natural Source Zone Depletion (NSZD)
  • 6.2.2 Phase Partitioning
  • 6.2.3 Molecular Diffusion
  • 6.2.4 Advection and Bubble-Facilitated Transport (Ebullition)
  • 6.2.5 Biodegradation During Vapor Transport
  • 6.2.6 Entry into the Building: Traditional and Preferential Pathways
  • 6.3 PVI Assessment
  • 6.3.1 Vertical and Lateral Exclusion Distance
  • 6.3.2 Analytical and Numerical Modeling
  • 6.3.3 Soil Gas Sampling
  • 6.3.4 Indoor Air Sampling
  • 6.3.5 Risk Assessment
  • 6.4 Conclusions
  • References.
  • 7 High-Resolution Characterization of the Shallow Unconsolidated Subsurface Using Direct Push, Nuclear Magnetic Resonance, and Groundwater Tracing Technologies
  • 7.1 Introduction
  • 7.2 Characterization of Hydraulic Conductivity by Direct Push Approaches
  • 7.2.1 Direct Push Technology
  • 7.2.2 Larned Research Site
  • 7.2.3 Direct Push Electrical Conductivity
  • 7.2.4 Direct Push Permeameter
  • 7.2.5 Direct Push Injection Logger
  • 7.2.6 Hydraulic Profiling Tool
  • 7.2.7 High-Resolution K (HRK) Tool
  • 7.2.8 Summary of Direct Push Approaches
  • 7.3 Characterization of Hydraulic Conductivity and Porosity by Nuclear Magnetic Resonance Profiling
  • 7.3.1 Nuclear Magnetic Resonance
  • 7.3.2 Nuclear Magnetic Resonance Application at Larned Research Site
  • 7.4 Groundwater Velocity Characterization
  • 7.4.1 Characterization of Velocity by Distributed Temperature Sensing
  • 7.4.2 Characterization of Groundwater Velocity by Point Velocity Probe
  • 7.5 Summary and Conclusions
  • References
  • 8 High-Resolution Delineation of Petroleum NAPLs
  • 8.1 History of Subsurface Petroleum Hydrocarbon Investigation
  • 8.2 High-Resolution Petroleum Hydrocarbon NAPL Screening
  • 8.2.1 Capabilities Necessary to Delineate NAPL
  • 8.2.2 Choosing the Appropriate Method
  • 8.3 High-Density Coring and Sampling (HDCS)
  • 8.3.1 Advantages and Disadvantages of HDCS
  • 8.3.2 HDSC - Best Practices
  • 8.3.3 HDCS Logging in Practice
  • 8.4 Direct Sensing of Petroleum NAPL
  • 8.5 Membrane Interface Probe (MIP)
  • 8.5.1 MIP Logging in Practice
  • 8.6 Laser-Induced Fluorescence (LIF)
  • 8.6.1 History
  • 8.6.2 LIF Family of Optical Screening Tools
  • 8.6.3 NAPL Fluorescence
  • 8.6.4 UVOST Waveforms
  • 8.6.5 Analysis and Interpretation of LIF Logs
  • 8.7 Tar-Specific Green Optical Screening Tool (TarGOST®)
  • 8.8 Dye-Enhanced Laser-Induced Fluorescence (DyeLIF™).
  • 8.9 General Best Practices for LIF
  • 8.10 Conclusions
  • References
  • 9 Biogeophysics for Optimized Characterization of Petroleum-Contaminated Sites
  • 9.1 Introduction
  • 9.1.1 Terminal Electron Acceptor Processes at LNAPL Impacted Sites
  • 9.1.2 By-Products of Microbial-Mediated Redox Processes Drive Geophysical Property Changes
  • 9.2 Geophysical Methods
  • 9.2.1 Electrical Methods
  • 9.2.2 Magnetic Method
  • 9.3 Geophysical Applications and Case Studies
  • 9.3.1 Geophysical Signatures of Changes in Pore Fluid Conductivity
  • 9.3.2 Resistive Response in Saline Aquifers
  • 9.3.3 Example from Cold, Permafrost Environments
  • 9.3.4 Geophysical Signatures of Microbial-Mediated Mineral Precipitation
  • 9.3.5 Geophysical Investigations at Bemidji, Minnesota, USA
  • 9.3.6 Temporal (Time-Lapse) Geophysical Investigations of Hydrocarbon-Contaminated Sites
  • 9.3.7 Other Emergent Geophysical Techniques
  • 9.4 Conclusions and Key Take-Aways
  • References
  • 10 Molecular Biological Tools Used in Assessment and Remediation of Petroleum Hydrocarbons in Soil and Groundwater
  • 10.1 Introduction
  • 10.2 MBTs Used in PHC Investigation and Remediation
  • 10.2.1 In-Situ Microcosms (ISMs)
  • 10.2.2 Quantitative Polymerase Chain Reaction (qPCR)
  • 10.2.3 Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
  • 10.2.4 Stable Isotope Probing (SIP)
  • 10.2.5 Compound-Specific Isotope Analysis (CSIA)
  • 10.2.6 DNA Sequencing
  • 10.3 Selection of MBTs
  • 10.3.1 QPCR Versus RT-QPCR
  • 10.3.2 SIP Versus CSIA
  • 10.3.3 QPCR Versus qPCR Arrays Versus DNA Sequencing
  • 10.4 Case Studies
  • 10.4.1 Transition to MNA at a Former Retail Gasoline Station
  • 10.4.2 Oxygen Addition at a Former Retail Gasoline Station
  • 10.4.3 Continuation of MNA at a Pipeline Release in a Remote Area
  • 10.5 Cost Considerations in MBT Selection
  • 10.6 Summary.
  • 10.7 Future Directions
  • References
  • 11 Compound-Specific Isotope Analysis (CSIA) to Assess Remediation Performance at Petroleum Hydrocarbon-Contaminated Sites
  • 11.1 Introduction
  • 11.2 CSIA Principles
  • 11.2.1 Background and Concepts
  • 11.2.2 Isotope Analysis and Delta Notation
  • 11.2.3 Isotope Fractionation Processes and Quantification
  • 11.3 CSIA Implementation for Field Site Evaluation
  • 11.3.1 Approach and Sampling Strategy Considerations
  • 11.3.2 CSIA Sampling Requirements and Procedures
  • 11.4 CSIA Field Data
  • 11.4.1 Interpretation Considerations and Pitfalls
  • 11.4.2 Assessment Approach
  • 11.5 Examples of Field Case Applications
  • 11.5.1 In situ Chemical Oxidation Application
  • 11.5.2 Bioremediation Application
  • 11.6 Summary and Future Development
  • References
  • 12 LNAPL Transmissivity, Mobility and Recoverability-Utility and Complications
  • 12.1 Introduction
  • 12.2 Quantitative Definition of Tn
  • 12.3 Theoretical Implications of Tn Factors
  • 12.4 Effect of Soil Type
  • 12.5 Effect of LNAPL Properties
  • 12.6 Transience of LNAPL Transmissivity
  • 12.7 Summary of Theoretical Observations
  • 12.8 Estimation of LNAPL Transmissivity
  • 12.9 Field and Laboratory Testing Observations
  • 12.10 Intrinsic Permeability and Fluid Type
  • 12.11 Interfacial Tensions
  • 12.12 Real-World Heterogeneity
  • 12.13 Tn Field Observations
  • 12.14 The (F)Utility of LNAPL Recovery
  • 12.15 Recoverability Assessment of a Recent Release
  • 12.15.1 General Site Background and Findings
  • 12.15.2 LNAPL Mobility and Recoverability
  • 12.16 Laboratory-Derived versus Field LNAPL Transmissivity
  • 12.17 Flux and Longevity Considerations on LNAPL Recovery
  • 12.18 Conclusions
  • References
  • 13 Incorporating Natural Source Zone Depletion (NSZD) into the Site Management Strategy
  • 13.1 Introduction
  • 13.2 Overview of Case Study Site Setting.
  • 13.3 Importance of Site Risk Profile and Regulatory Framework.