Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.

Saved in:
Bibliographic Details
Superior document:Environmental Contamination Remediation and Management Series.
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2023.
©2024.
Year of Publication:2023
Edition:First edition.
Language:English
Series:Environmental contamination remediation and management.
Physical Description:1 online resource (675 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993640360704498
ctrlnum (CKB)29133410200041
(MiAaPQ)EBC31016762
(Au-PeEL)EBL31016762
(OCoLC)1415892655
(EXLCZ)9929133410200041
collection bib_alma
record_format marc
spelling García-Rincón, Jonás.
Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
First edition.
Cham : Springer International Publishing AG, 2023.
©2024.
1 online resource (675 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Environmental Contamination Remediation and Management Series.
Description based on publisher supplied metadata and other sources.
Intro -- Preface -- Reviewers -- Contents -- Contributors -- Acronyms and Symbols -- 1 Complexities of Petroleum Hydrocarbon Contaminated Sites -- 1.1 Introduction -- 1.2 Problem Recognition and Regulatory Environment -- 1.2.1 Problem recognition-The Case of Large Oil Spills -- 1.2.2 Regulatory Frameworks -- 1.2.3 Toward Improved Management and Regulation of PHC-Contaminated Sites -- 1.3 Multiphase Flow Mechanics -- 1.4 Complexities Associated with PHC NAPL Composition -- 1.5 Geological and Hydrogeological Concepts that Help Tackle LNAPL Management Challenges -- 1.6 Summary -- References -- 2 Historical Development of Constitutive Relations for Addressing Subsurface LNAPL Contamination -- 2.1 Introduction -- 2.2 Recognition of Health Effects from LNAPLs in the Subsurface -- 2.3 Predicting Subsurface LNAPL Behavior: Early Developments -- 2.4 The Parker et al. (1987) Nonhysteretic Model -- 2.5 Hysteretic Model -- 2.6 Predicting LNAPL Saturations, Volumes, and Transmissivity from Well Levels -- 2.7 Incorporating Free, Residual, and Entrapped LNAPL Fractions -- 2.8 Recent Developments. The Lenhard et al. (2017) Model -- 2.9 Layered Porous Media -- 2.10 Summary and Steps Forward -- References -- 3 Estimating LNAPL Volumes in Unimodal and Multimodal Subsurface Pore Systems -- 3.1 Introduction -- 3.2 Pore Structures -- 3.3 Water and LNAPL Saturations -- 3.4 Capillary Pressure-Saturation Curves -- 3.5 Estimating LNAPL Saturations and Volumes from In-Well Thickness -- 3.6 Conclusions -- References -- 4 The Application of Sequence Stratigraphy to the Investigation and Remediation of LNAPL-Contaminated Sites -- 4.1 Introduction -- 4.1.1 The Challenge of Subsurface Heterogeneity on LNAPL Remediation -- 4.1.2 Application of Facies Models for Predicting Subsurface Heterogeneity -- 4.2 Lithostratigraphy Versus Chronostratigraphy.
4.2.1 The Pitfalls of Traditional Correlation Methods -- 4.2.2 Chronostratigraphy-The Preferred Approach to Stratigraphic Correlation -- 4.3 Sequence Stratigraphy-A New Paradigm for the Environmental Industry -- 4.4 Methodology -- 4.4.1 Application of Sequence Stratigraphic Principles at Contaminated Sites -- 4.4.2 Evaluation of Geologic Setting and Accommodation -- 4.4.3 Analysis of Lithologic Data -- 4.4.4 Facies Architecture Analysis -- 4.4.5 Correlation Between Boreholes -- 4.4.6 Integration with Hydrogeology and Chemistry Data -- 4.5 Case Study: Using Sequence Stratigraphy to Inform Remedial Decision-Making at a Geologically Complex LNAPL-Impacted Site -- 4.5.1 Site Background -- 4.5.2 Application of Sequence Stratigraphy -- 4.6 Summary -- 4.7 Future Directions -- References -- 5 Natural Source Zone Depletion of Petroleum Hydrocarbon NAPL -- 5.1 Overview of NSZD Process -- 5.2 Measuring NSZD Rates -- 5.2.1 Soil Gas Methods -- 5.2.2 Soil Temperature Methods -- 5.2.3 Petroleum NAPL Chemical Composition Change -- 5.2.4 Emerging Science and Future Vision -- 5.2.5 Summary and Conclusion -- References -- 6 Petroleum Vapor Intrusion -- 6.1 Introduction -- 6.2 Fate and Transport of Petroleum Vapors in the Subsurface -- 6.2.1 Natural Source Zone Depletion (NSZD) -- 6.2.2 Phase Partitioning -- 6.2.3 Molecular Diffusion -- 6.2.4 Advection and Bubble-Facilitated Transport (Ebullition) -- 6.2.5 Biodegradation During Vapor Transport -- 6.2.6 Entry into the Building: Traditional and Preferential Pathways -- 6.3 PVI Assessment -- 6.3.1 Vertical and Lateral Exclusion Distance -- 6.3.2 Analytical and Numerical Modeling -- 6.3.3 Soil Gas Sampling -- 6.3.4 Indoor Air Sampling -- 6.3.5 Risk Assessment -- 6.4 Conclusions -- References.
7 High-Resolution Characterization of the Shallow Unconsolidated Subsurface Using Direct Push, Nuclear Magnetic Resonance, and Groundwater Tracing Technologies -- 7.1 Introduction -- 7.2 Characterization of Hydraulic Conductivity by Direct Push Approaches -- 7.2.1 Direct Push Technology -- 7.2.2 Larned Research Site -- 7.2.3 Direct Push Electrical Conductivity -- 7.2.4 Direct Push Permeameter -- 7.2.5 Direct Push Injection Logger -- 7.2.6 Hydraulic Profiling Tool -- 7.2.7 High-Resolution K (HRK) Tool -- 7.2.8 Summary of Direct Push Approaches -- 7.3 Characterization of Hydraulic Conductivity and Porosity by Nuclear Magnetic Resonance Profiling -- 7.3.1 Nuclear Magnetic Resonance -- 7.3.2 Nuclear Magnetic Resonance Application at Larned Research Site -- 7.4 Groundwater Velocity Characterization -- 7.4.1 Characterization of Velocity by Distributed Temperature Sensing -- 7.4.2 Characterization of Groundwater Velocity by Point Velocity Probe -- 7.5 Summary and Conclusions -- References -- 8 High-Resolution Delineation of Petroleum NAPLs -- 8.1 History of Subsurface Petroleum Hydrocarbon Investigation -- 8.2 High-Resolution Petroleum Hydrocarbon NAPL Screening -- 8.2.1 Capabilities Necessary to Delineate NAPL -- 8.2.2 Choosing the Appropriate Method -- 8.3 High-Density Coring and Sampling (HDCS) -- 8.3.1 Advantages and Disadvantages of HDCS -- 8.3.2 HDSC - Best Practices -- 8.3.3 HDCS Logging in Practice -- 8.4 Direct Sensing of Petroleum NAPL -- 8.5 Membrane Interface Probe (MIP) -- 8.5.1 MIP Logging in Practice -- 8.6 Laser-Induced Fluorescence (LIF) -- 8.6.1 History -- 8.6.2 LIF Family of Optical Screening Tools -- 8.6.3 NAPL Fluorescence -- 8.6.4 UVOST Waveforms -- 8.6.5 Analysis and Interpretation of LIF Logs -- 8.7 Tar-Specific Green Optical Screening Tool (TarGOST®) -- 8.8 Dye-Enhanced Laser-Induced Fluorescence (DyeLIF™).
8.9 General Best Practices for LIF -- 8.10 Conclusions -- References -- 9 Biogeophysics for Optimized Characterization of Petroleum-Contaminated Sites -- 9.1 Introduction -- 9.1.1 Terminal Electron Acceptor Processes at LNAPL Impacted Sites -- 9.1.2 By-Products of Microbial-Mediated Redox Processes Drive Geophysical Property Changes -- 9.2 Geophysical Methods -- 9.2.1 Electrical Methods -- 9.2.2 Magnetic Method -- 9.3 Geophysical Applications and Case Studies -- 9.3.1 Geophysical Signatures of Changes in Pore Fluid Conductivity -- 9.3.2 Resistive Response in Saline Aquifers -- 9.3.3 Example from Cold, Permafrost Environments -- 9.3.4 Geophysical Signatures of Microbial-Mediated Mineral Precipitation -- 9.3.5 Geophysical Investigations at Bemidji, Minnesota, USA -- 9.3.6 Temporal (Time-Lapse) Geophysical Investigations of Hydrocarbon-Contaminated Sites -- 9.3.7 Other Emergent Geophysical Techniques -- 9.4 Conclusions and Key Take-Aways -- References -- 10 Molecular Biological Tools Used in Assessment and Remediation of Petroleum Hydrocarbons in Soil and Groundwater -- 10.1 Introduction -- 10.2 MBTs Used in PHC Investigation and Remediation -- 10.2.1 In-Situ Microcosms (ISMs) -- 10.2.2 Quantitative Polymerase Chain Reaction (qPCR) -- 10.2.3 Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) -- 10.2.4 Stable Isotope Probing (SIP) -- 10.2.5 Compound-Specific Isotope Analysis (CSIA) -- 10.2.6 DNA Sequencing -- 10.3 Selection of MBTs -- 10.3.1 QPCR Versus RT-QPCR -- 10.3.2 SIP Versus CSIA -- 10.3.3 QPCR Versus qPCR Arrays Versus DNA Sequencing -- 10.4 Case Studies -- 10.4.1 Transition to MNA at a Former Retail Gasoline Station -- 10.4.2 Oxygen Addition at a Former Retail Gasoline Station -- 10.4.3 Continuation of MNA at a Pipeline Release in a Remote Area -- 10.5 Cost Considerations in MBT Selection -- 10.6 Summary.
10.7 Future Directions -- References -- 11 Compound-Specific Isotope Analysis (CSIA) to Assess Remediation Performance at Petroleum Hydrocarbon-Contaminated Sites -- 11.1 Introduction -- 11.2 CSIA Principles -- 11.2.1 Background and Concepts -- 11.2.2 Isotope Analysis and Delta Notation -- 11.2.3 Isotope Fractionation Processes and Quantification -- 11.3 CSIA Implementation for Field Site Evaluation -- 11.3.1 Approach and Sampling Strategy Considerations -- 11.3.2 CSIA Sampling Requirements and Procedures -- 11.4 CSIA Field Data -- 11.4.1 Interpretation Considerations and Pitfalls -- 11.4.2 Assessment Approach -- 11.5 Examples of Field Case Applications -- 11.5.1 In situ Chemical Oxidation Application -- 11.5.2 Bioremediation Application -- 11.6 Summary and Future Development -- References -- 12 LNAPL Transmissivity, Mobility and Recoverability-Utility and Complications -- 12.1 Introduction -- 12.2 Quantitative Definition of Tn -- 12.3 Theoretical Implications of Tn Factors -- 12.4 Effect of Soil Type -- 12.5 Effect of LNAPL Properties -- 12.6 Transience of LNAPL Transmissivity -- 12.7 Summary of Theoretical Observations -- 12.8 Estimation of LNAPL Transmissivity -- 12.9 Field and Laboratory Testing Observations -- 12.10 Intrinsic Permeability and Fluid Type -- 12.11 Interfacial Tensions -- 12.12 Real-World Heterogeneity -- 12.13 Tn Field Observations -- 12.14 The (F)Utility of LNAPL Recovery -- 12.15 Recoverability Assessment of a Recent Release -- 12.15.1 General Site Background and Findings -- 12.15.2 LNAPL Mobility and Recoverability -- 12.16 Laboratory-Derived versus Field LNAPL Transmissivity -- 12.17 Flux and Longevity Considerations on LNAPL Recovery -- 12.18 Conclusions -- References -- 13 Incorporating Natural Source Zone Depletion (NSZD) into the Site Management Strategy -- 13.1 Introduction -- 13.2 Overview of Case Study Site Setting.
13.3 Importance of Site Risk Profile and Regulatory Framework.
Gatsios, Evangelos.
Lenhard, Robert J. (Robert James)
Atekwana, Estella A.
Naidu, Ravi.
3-031-34446-4
Environmental contamination remediation and management.
language English
format eBook
author García-Rincón, Jonás.
spellingShingle García-Rincón, Jonás.
Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
Environmental Contamination Remediation and Management Series.
Intro -- Preface -- Reviewers -- Contents -- Contributors -- Acronyms and Symbols -- 1 Complexities of Petroleum Hydrocarbon Contaminated Sites -- 1.1 Introduction -- 1.2 Problem Recognition and Regulatory Environment -- 1.2.1 Problem recognition-The Case of Large Oil Spills -- 1.2.2 Regulatory Frameworks -- 1.2.3 Toward Improved Management and Regulation of PHC-Contaminated Sites -- 1.3 Multiphase Flow Mechanics -- 1.4 Complexities Associated with PHC NAPL Composition -- 1.5 Geological and Hydrogeological Concepts that Help Tackle LNAPL Management Challenges -- 1.6 Summary -- References -- 2 Historical Development of Constitutive Relations for Addressing Subsurface LNAPL Contamination -- 2.1 Introduction -- 2.2 Recognition of Health Effects from LNAPLs in the Subsurface -- 2.3 Predicting Subsurface LNAPL Behavior: Early Developments -- 2.4 The Parker et al. (1987) Nonhysteretic Model -- 2.5 Hysteretic Model -- 2.6 Predicting LNAPL Saturations, Volumes, and Transmissivity from Well Levels -- 2.7 Incorporating Free, Residual, and Entrapped LNAPL Fractions -- 2.8 Recent Developments. The Lenhard et al. (2017) Model -- 2.9 Layered Porous Media -- 2.10 Summary and Steps Forward -- References -- 3 Estimating LNAPL Volumes in Unimodal and Multimodal Subsurface Pore Systems -- 3.1 Introduction -- 3.2 Pore Structures -- 3.3 Water and LNAPL Saturations -- 3.4 Capillary Pressure-Saturation Curves -- 3.5 Estimating LNAPL Saturations and Volumes from In-Well Thickness -- 3.6 Conclusions -- References -- 4 The Application of Sequence Stratigraphy to the Investigation and Remediation of LNAPL-Contaminated Sites -- 4.1 Introduction -- 4.1.1 The Challenge of Subsurface Heterogeneity on LNAPL Remediation -- 4.1.2 Application of Facies Models for Predicting Subsurface Heterogeneity -- 4.2 Lithostratigraphy Versus Chronostratigraphy.
4.2.1 The Pitfalls of Traditional Correlation Methods -- 4.2.2 Chronostratigraphy-The Preferred Approach to Stratigraphic Correlation -- 4.3 Sequence Stratigraphy-A New Paradigm for the Environmental Industry -- 4.4 Methodology -- 4.4.1 Application of Sequence Stratigraphic Principles at Contaminated Sites -- 4.4.2 Evaluation of Geologic Setting and Accommodation -- 4.4.3 Analysis of Lithologic Data -- 4.4.4 Facies Architecture Analysis -- 4.4.5 Correlation Between Boreholes -- 4.4.6 Integration with Hydrogeology and Chemistry Data -- 4.5 Case Study: Using Sequence Stratigraphy to Inform Remedial Decision-Making at a Geologically Complex LNAPL-Impacted Site -- 4.5.1 Site Background -- 4.5.2 Application of Sequence Stratigraphy -- 4.6 Summary -- 4.7 Future Directions -- References -- 5 Natural Source Zone Depletion of Petroleum Hydrocarbon NAPL -- 5.1 Overview of NSZD Process -- 5.2 Measuring NSZD Rates -- 5.2.1 Soil Gas Methods -- 5.2.2 Soil Temperature Methods -- 5.2.3 Petroleum NAPL Chemical Composition Change -- 5.2.4 Emerging Science and Future Vision -- 5.2.5 Summary and Conclusion -- References -- 6 Petroleum Vapor Intrusion -- 6.1 Introduction -- 6.2 Fate and Transport of Petroleum Vapors in the Subsurface -- 6.2.1 Natural Source Zone Depletion (NSZD) -- 6.2.2 Phase Partitioning -- 6.2.3 Molecular Diffusion -- 6.2.4 Advection and Bubble-Facilitated Transport (Ebullition) -- 6.2.5 Biodegradation During Vapor Transport -- 6.2.6 Entry into the Building: Traditional and Preferential Pathways -- 6.3 PVI Assessment -- 6.3.1 Vertical and Lateral Exclusion Distance -- 6.3.2 Analytical and Numerical Modeling -- 6.3.3 Soil Gas Sampling -- 6.3.4 Indoor Air Sampling -- 6.3.5 Risk Assessment -- 6.4 Conclusions -- References.
7 High-Resolution Characterization of the Shallow Unconsolidated Subsurface Using Direct Push, Nuclear Magnetic Resonance, and Groundwater Tracing Technologies -- 7.1 Introduction -- 7.2 Characterization of Hydraulic Conductivity by Direct Push Approaches -- 7.2.1 Direct Push Technology -- 7.2.2 Larned Research Site -- 7.2.3 Direct Push Electrical Conductivity -- 7.2.4 Direct Push Permeameter -- 7.2.5 Direct Push Injection Logger -- 7.2.6 Hydraulic Profiling Tool -- 7.2.7 High-Resolution K (HRK) Tool -- 7.2.8 Summary of Direct Push Approaches -- 7.3 Characterization of Hydraulic Conductivity and Porosity by Nuclear Magnetic Resonance Profiling -- 7.3.1 Nuclear Magnetic Resonance -- 7.3.2 Nuclear Magnetic Resonance Application at Larned Research Site -- 7.4 Groundwater Velocity Characterization -- 7.4.1 Characterization of Velocity by Distributed Temperature Sensing -- 7.4.2 Characterization of Groundwater Velocity by Point Velocity Probe -- 7.5 Summary and Conclusions -- References -- 8 High-Resolution Delineation of Petroleum NAPLs -- 8.1 History of Subsurface Petroleum Hydrocarbon Investigation -- 8.2 High-Resolution Petroleum Hydrocarbon NAPL Screening -- 8.2.1 Capabilities Necessary to Delineate NAPL -- 8.2.2 Choosing the Appropriate Method -- 8.3 High-Density Coring and Sampling (HDCS) -- 8.3.1 Advantages and Disadvantages of HDCS -- 8.3.2 HDSC - Best Practices -- 8.3.3 HDCS Logging in Practice -- 8.4 Direct Sensing of Petroleum NAPL -- 8.5 Membrane Interface Probe (MIP) -- 8.5.1 MIP Logging in Practice -- 8.6 Laser-Induced Fluorescence (LIF) -- 8.6.1 History -- 8.6.2 LIF Family of Optical Screening Tools -- 8.6.3 NAPL Fluorescence -- 8.6.4 UVOST Waveforms -- 8.6.5 Analysis and Interpretation of LIF Logs -- 8.7 Tar-Specific Green Optical Screening Tool (TarGOST®) -- 8.8 Dye-Enhanced Laser-Induced Fluorescence (DyeLIF™).
8.9 General Best Practices for LIF -- 8.10 Conclusions -- References -- 9 Biogeophysics for Optimized Characterization of Petroleum-Contaminated Sites -- 9.1 Introduction -- 9.1.1 Terminal Electron Acceptor Processes at LNAPL Impacted Sites -- 9.1.2 By-Products of Microbial-Mediated Redox Processes Drive Geophysical Property Changes -- 9.2 Geophysical Methods -- 9.2.1 Electrical Methods -- 9.2.2 Magnetic Method -- 9.3 Geophysical Applications and Case Studies -- 9.3.1 Geophysical Signatures of Changes in Pore Fluid Conductivity -- 9.3.2 Resistive Response in Saline Aquifers -- 9.3.3 Example from Cold, Permafrost Environments -- 9.3.4 Geophysical Signatures of Microbial-Mediated Mineral Precipitation -- 9.3.5 Geophysical Investigations at Bemidji, Minnesota, USA -- 9.3.6 Temporal (Time-Lapse) Geophysical Investigations of Hydrocarbon-Contaminated Sites -- 9.3.7 Other Emergent Geophysical Techniques -- 9.4 Conclusions and Key Take-Aways -- References -- 10 Molecular Biological Tools Used in Assessment and Remediation of Petroleum Hydrocarbons in Soil and Groundwater -- 10.1 Introduction -- 10.2 MBTs Used in PHC Investigation and Remediation -- 10.2.1 In-Situ Microcosms (ISMs) -- 10.2.2 Quantitative Polymerase Chain Reaction (qPCR) -- 10.2.3 Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) -- 10.2.4 Stable Isotope Probing (SIP) -- 10.2.5 Compound-Specific Isotope Analysis (CSIA) -- 10.2.6 DNA Sequencing -- 10.3 Selection of MBTs -- 10.3.1 QPCR Versus RT-QPCR -- 10.3.2 SIP Versus CSIA -- 10.3.3 QPCR Versus qPCR Arrays Versus DNA Sequencing -- 10.4 Case Studies -- 10.4.1 Transition to MNA at a Former Retail Gasoline Station -- 10.4.2 Oxygen Addition at a Former Retail Gasoline Station -- 10.4.3 Continuation of MNA at a Pipeline Release in a Remote Area -- 10.5 Cost Considerations in MBT Selection -- 10.6 Summary.
10.7 Future Directions -- References -- 11 Compound-Specific Isotope Analysis (CSIA) to Assess Remediation Performance at Petroleum Hydrocarbon-Contaminated Sites -- 11.1 Introduction -- 11.2 CSIA Principles -- 11.2.1 Background and Concepts -- 11.2.2 Isotope Analysis and Delta Notation -- 11.2.3 Isotope Fractionation Processes and Quantification -- 11.3 CSIA Implementation for Field Site Evaluation -- 11.3.1 Approach and Sampling Strategy Considerations -- 11.3.2 CSIA Sampling Requirements and Procedures -- 11.4 CSIA Field Data -- 11.4.1 Interpretation Considerations and Pitfalls -- 11.4.2 Assessment Approach -- 11.5 Examples of Field Case Applications -- 11.5.1 In situ Chemical Oxidation Application -- 11.5.2 Bioremediation Application -- 11.6 Summary and Future Development -- References -- 12 LNAPL Transmissivity, Mobility and Recoverability-Utility and Complications -- 12.1 Introduction -- 12.2 Quantitative Definition of Tn -- 12.3 Theoretical Implications of Tn Factors -- 12.4 Effect of Soil Type -- 12.5 Effect of LNAPL Properties -- 12.6 Transience of LNAPL Transmissivity -- 12.7 Summary of Theoretical Observations -- 12.8 Estimation of LNAPL Transmissivity -- 12.9 Field and Laboratory Testing Observations -- 12.10 Intrinsic Permeability and Fluid Type -- 12.11 Interfacial Tensions -- 12.12 Real-World Heterogeneity -- 12.13 Tn Field Observations -- 12.14 The (F)Utility of LNAPL Recovery -- 12.15 Recoverability Assessment of a Recent Release -- 12.15.1 General Site Background and Findings -- 12.15.2 LNAPL Mobility and Recoverability -- 12.16 Laboratory-Derived versus Field LNAPL Transmissivity -- 12.17 Flux and Longevity Considerations on LNAPL Recovery -- 12.18 Conclusions -- References -- 13 Incorporating Natural Source Zone Depletion (NSZD) into the Site Management Strategy -- 13.1 Introduction -- 13.2 Overview of Case Study Site Setting.
13.3 Importance of Site Risk Profile and Regulatory Framework.
author_facet García-Rincón, Jonás.
Gatsios, Evangelos.
Lenhard, Robert J.
Atekwana, Estella A.
Naidu, Ravi.
author_variant j g r jgr
author2 Gatsios, Evangelos.
Lenhard, Robert J.
Atekwana, Estella A.
Naidu, Ravi.
author2_variant e g eg
r j l rj rjl
e a a ea eaa
r n rn
author2_fuller (Robert James)
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort García-Rincón, Jonás.
title Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
title_full Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
title_fullStr Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
title_full_unstemmed Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
title_auth Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
title_new Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
title_sort advances in the characterisation and remediation of sites contaminated with petroleum hydrocarbons.
series Environmental Contamination Remediation and Management Series.
series2 Environmental Contamination Remediation and Management Series.
publisher Springer International Publishing AG,
publishDate 2023
physical 1 online resource (675 pages)
edition First edition.
contents Intro -- Preface -- Reviewers -- Contents -- Contributors -- Acronyms and Symbols -- 1 Complexities of Petroleum Hydrocarbon Contaminated Sites -- 1.1 Introduction -- 1.2 Problem Recognition and Regulatory Environment -- 1.2.1 Problem recognition-The Case of Large Oil Spills -- 1.2.2 Regulatory Frameworks -- 1.2.3 Toward Improved Management and Regulation of PHC-Contaminated Sites -- 1.3 Multiphase Flow Mechanics -- 1.4 Complexities Associated with PHC NAPL Composition -- 1.5 Geological and Hydrogeological Concepts that Help Tackle LNAPL Management Challenges -- 1.6 Summary -- References -- 2 Historical Development of Constitutive Relations for Addressing Subsurface LNAPL Contamination -- 2.1 Introduction -- 2.2 Recognition of Health Effects from LNAPLs in the Subsurface -- 2.3 Predicting Subsurface LNAPL Behavior: Early Developments -- 2.4 The Parker et al. (1987) Nonhysteretic Model -- 2.5 Hysteretic Model -- 2.6 Predicting LNAPL Saturations, Volumes, and Transmissivity from Well Levels -- 2.7 Incorporating Free, Residual, and Entrapped LNAPL Fractions -- 2.8 Recent Developments. The Lenhard et al. (2017) Model -- 2.9 Layered Porous Media -- 2.10 Summary and Steps Forward -- References -- 3 Estimating LNAPL Volumes in Unimodal and Multimodal Subsurface Pore Systems -- 3.1 Introduction -- 3.2 Pore Structures -- 3.3 Water and LNAPL Saturations -- 3.4 Capillary Pressure-Saturation Curves -- 3.5 Estimating LNAPL Saturations and Volumes from In-Well Thickness -- 3.6 Conclusions -- References -- 4 The Application of Sequence Stratigraphy to the Investigation and Remediation of LNAPL-Contaminated Sites -- 4.1 Introduction -- 4.1.1 The Challenge of Subsurface Heterogeneity on LNAPL Remediation -- 4.1.2 Application of Facies Models for Predicting Subsurface Heterogeneity -- 4.2 Lithostratigraphy Versus Chronostratigraphy.
4.2.1 The Pitfalls of Traditional Correlation Methods -- 4.2.2 Chronostratigraphy-The Preferred Approach to Stratigraphic Correlation -- 4.3 Sequence Stratigraphy-A New Paradigm for the Environmental Industry -- 4.4 Methodology -- 4.4.1 Application of Sequence Stratigraphic Principles at Contaminated Sites -- 4.4.2 Evaluation of Geologic Setting and Accommodation -- 4.4.3 Analysis of Lithologic Data -- 4.4.4 Facies Architecture Analysis -- 4.4.5 Correlation Between Boreholes -- 4.4.6 Integration with Hydrogeology and Chemistry Data -- 4.5 Case Study: Using Sequence Stratigraphy to Inform Remedial Decision-Making at a Geologically Complex LNAPL-Impacted Site -- 4.5.1 Site Background -- 4.5.2 Application of Sequence Stratigraphy -- 4.6 Summary -- 4.7 Future Directions -- References -- 5 Natural Source Zone Depletion of Petroleum Hydrocarbon NAPL -- 5.1 Overview of NSZD Process -- 5.2 Measuring NSZD Rates -- 5.2.1 Soil Gas Methods -- 5.2.2 Soil Temperature Methods -- 5.2.3 Petroleum NAPL Chemical Composition Change -- 5.2.4 Emerging Science and Future Vision -- 5.2.5 Summary and Conclusion -- References -- 6 Petroleum Vapor Intrusion -- 6.1 Introduction -- 6.2 Fate and Transport of Petroleum Vapors in the Subsurface -- 6.2.1 Natural Source Zone Depletion (NSZD) -- 6.2.2 Phase Partitioning -- 6.2.3 Molecular Diffusion -- 6.2.4 Advection and Bubble-Facilitated Transport (Ebullition) -- 6.2.5 Biodegradation During Vapor Transport -- 6.2.6 Entry into the Building: Traditional and Preferential Pathways -- 6.3 PVI Assessment -- 6.3.1 Vertical and Lateral Exclusion Distance -- 6.3.2 Analytical and Numerical Modeling -- 6.3.3 Soil Gas Sampling -- 6.3.4 Indoor Air Sampling -- 6.3.5 Risk Assessment -- 6.4 Conclusions -- References.
7 High-Resolution Characterization of the Shallow Unconsolidated Subsurface Using Direct Push, Nuclear Magnetic Resonance, and Groundwater Tracing Technologies -- 7.1 Introduction -- 7.2 Characterization of Hydraulic Conductivity by Direct Push Approaches -- 7.2.1 Direct Push Technology -- 7.2.2 Larned Research Site -- 7.2.3 Direct Push Electrical Conductivity -- 7.2.4 Direct Push Permeameter -- 7.2.5 Direct Push Injection Logger -- 7.2.6 Hydraulic Profiling Tool -- 7.2.7 High-Resolution K (HRK) Tool -- 7.2.8 Summary of Direct Push Approaches -- 7.3 Characterization of Hydraulic Conductivity and Porosity by Nuclear Magnetic Resonance Profiling -- 7.3.1 Nuclear Magnetic Resonance -- 7.3.2 Nuclear Magnetic Resonance Application at Larned Research Site -- 7.4 Groundwater Velocity Characterization -- 7.4.1 Characterization of Velocity by Distributed Temperature Sensing -- 7.4.2 Characterization of Groundwater Velocity by Point Velocity Probe -- 7.5 Summary and Conclusions -- References -- 8 High-Resolution Delineation of Petroleum NAPLs -- 8.1 History of Subsurface Petroleum Hydrocarbon Investigation -- 8.2 High-Resolution Petroleum Hydrocarbon NAPL Screening -- 8.2.1 Capabilities Necessary to Delineate NAPL -- 8.2.2 Choosing the Appropriate Method -- 8.3 High-Density Coring and Sampling (HDCS) -- 8.3.1 Advantages and Disadvantages of HDCS -- 8.3.2 HDSC - Best Practices -- 8.3.3 HDCS Logging in Practice -- 8.4 Direct Sensing of Petroleum NAPL -- 8.5 Membrane Interface Probe (MIP) -- 8.5.1 MIP Logging in Practice -- 8.6 Laser-Induced Fluorescence (LIF) -- 8.6.1 History -- 8.6.2 LIF Family of Optical Screening Tools -- 8.6.3 NAPL Fluorescence -- 8.6.4 UVOST Waveforms -- 8.6.5 Analysis and Interpretation of LIF Logs -- 8.7 Tar-Specific Green Optical Screening Tool (TarGOST®) -- 8.8 Dye-Enhanced Laser-Induced Fluorescence (DyeLIF™).
8.9 General Best Practices for LIF -- 8.10 Conclusions -- References -- 9 Biogeophysics for Optimized Characterization of Petroleum-Contaminated Sites -- 9.1 Introduction -- 9.1.1 Terminal Electron Acceptor Processes at LNAPL Impacted Sites -- 9.1.2 By-Products of Microbial-Mediated Redox Processes Drive Geophysical Property Changes -- 9.2 Geophysical Methods -- 9.2.1 Electrical Methods -- 9.2.2 Magnetic Method -- 9.3 Geophysical Applications and Case Studies -- 9.3.1 Geophysical Signatures of Changes in Pore Fluid Conductivity -- 9.3.2 Resistive Response in Saline Aquifers -- 9.3.3 Example from Cold, Permafrost Environments -- 9.3.4 Geophysical Signatures of Microbial-Mediated Mineral Precipitation -- 9.3.5 Geophysical Investigations at Bemidji, Minnesota, USA -- 9.3.6 Temporal (Time-Lapse) Geophysical Investigations of Hydrocarbon-Contaminated Sites -- 9.3.7 Other Emergent Geophysical Techniques -- 9.4 Conclusions and Key Take-Aways -- References -- 10 Molecular Biological Tools Used in Assessment and Remediation of Petroleum Hydrocarbons in Soil and Groundwater -- 10.1 Introduction -- 10.2 MBTs Used in PHC Investigation and Remediation -- 10.2.1 In-Situ Microcosms (ISMs) -- 10.2.2 Quantitative Polymerase Chain Reaction (qPCR) -- 10.2.3 Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) -- 10.2.4 Stable Isotope Probing (SIP) -- 10.2.5 Compound-Specific Isotope Analysis (CSIA) -- 10.2.6 DNA Sequencing -- 10.3 Selection of MBTs -- 10.3.1 QPCR Versus RT-QPCR -- 10.3.2 SIP Versus CSIA -- 10.3.3 QPCR Versus qPCR Arrays Versus DNA Sequencing -- 10.4 Case Studies -- 10.4.1 Transition to MNA at a Former Retail Gasoline Station -- 10.4.2 Oxygen Addition at a Former Retail Gasoline Station -- 10.4.3 Continuation of MNA at a Pipeline Release in a Remote Area -- 10.5 Cost Considerations in MBT Selection -- 10.6 Summary.
10.7 Future Directions -- References -- 11 Compound-Specific Isotope Analysis (CSIA) to Assess Remediation Performance at Petroleum Hydrocarbon-Contaminated Sites -- 11.1 Introduction -- 11.2 CSIA Principles -- 11.2.1 Background and Concepts -- 11.2.2 Isotope Analysis and Delta Notation -- 11.2.3 Isotope Fractionation Processes and Quantification -- 11.3 CSIA Implementation for Field Site Evaluation -- 11.3.1 Approach and Sampling Strategy Considerations -- 11.3.2 CSIA Sampling Requirements and Procedures -- 11.4 CSIA Field Data -- 11.4.1 Interpretation Considerations and Pitfalls -- 11.4.2 Assessment Approach -- 11.5 Examples of Field Case Applications -- 11.5.1 In situ Chemical Oxidation Application -- 11.5.2 Bioremediation Application -- 11.6 Summary and Future Development -- References -- 12 LNAPL Transmissivity, Mobility and Recoverability-Utility and Complications -- 12.1 Introduction -- 12.2 Quantitative Definition of Tn -- 12.3 Theoretical Implications of Tn Factors -- 12.4 Effect of Soil Type -- 12.5 Effect of LNAPL Properties -- 12.6 Transience of LNAPL Transmissivity -- 12.7 Summary of Theoretical Observations -- 12.8 Estimation of LNAPL Transmissivity -- 12.9 Field and Laboratory Testing Observations -- 12.10 Intrinsic Permeability and Fluid Type -- 12.11 Interfacial Tensions -- 12.12 Real-World Heterogeneity -- 12.13 Tn Field Observations -- 12.14 The (F)Utility of LNAPL Recovery -- 12.15 Recoverability Assessment of a Recent Release -- 12.15.1 General Site Background and Findings -- 12.15.2 LNAPL Mobility and Recoverability -- 12.16 Laboratory-Derived versus Field LNAPL Transmissivity -- 12.17 Flux and Longevity Considerations on LNAPL Recovery -- 12.18 Conclusions -- References -- 13 Incorporating Natural Source Zone Depletion (NSZD) into the Site Management Strategy -- 13.1 Introduction -- 13.2 Overview of Case Study Site Setting.
13.3 Importance of Site Risk Profile and Regulatory Framework.
isbn 3-031-34447-2
3-031-34446-4
callnumber-first G - Geography, Anthropology, Recreation
callnumber-subject G - General Geography
callnumber-label G1-922
callnumber-sort G 11 3922
illustrated Not Illustrated
oclc_num 1415892655
work_keys_str_mv AT garciarinconjonas advancesinthecharacterisationandremediationofsitescontaminatedwithpetroleumhydrocarbons
AT gatsiosevangelos advancesinthecharacterisationandremediationofsitescontaminatedwithpetroleumhydrocarbons
AT lenhardrobertj advancesinthecharacterisationandremediationofsitescontaminatedwithpetroleumhydrocarbons
AT atekwanaestellaa advancesinthecharacterisationandremediationofsitescontaminatedwithpetroleumhydrocarbons
AT naiduravi advancesinthecharacterisationandremediationofsitescontaminatedwithpetroleumhydrocarbons
status_str n
ids_txt_mv (CKB)29133410200041
(MiAaPQ)EBC31016762
(Au-PeEL)EBL31016762
(OCoLC)1415892655
(EXLCZ)9929133410200041
carrierType_str_mv cr
hierarchy_parent_title Environmental Contamination Remediation and Management Series.
is_hierarchy_title Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.
container_title Environmental Contamination Remediation and Management Series.
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
_version_ 1801899438855159808
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01301nam a22003733i 4500</leader><controlfield tag="001">993640360704498</controlfield><controlfield tag="005">20231221165043.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr#|||||||||||</controlfield><controlfield tag="008">231218s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-031-34447-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)29133410200041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC31016762</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL31016762</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1415892655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)9929133410200041</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">G1-922</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">García-Rincón, Jonás.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (675 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Environmental Contamination Remediation and Management Series.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Reviewers -- Contents -- Contributors -- Acronyms and Symbols -- 1 Complexities of Petroleum Hydrocarbon Contaminated Sites -- 1.1 Introduction -- 1.2 Problem Recognition and Regulatory Environment -- 1.2.1 Problem recognition-The Case of Large Oil Spills -- 1.2.2 Regulatory Frameworks -- 1.2.3 Toward Improved Management and Regulation of PHC-Contaminated Sites -- 1.3 Multiphase Flow Mechanics -- 1.4 Complexities Associated with PHC NAPL Composition -- 1.5 Geological and Hydrogeological Concepts that Help Tackle LNAPL Management Challenges -- 1.6 Summary -- References -- 2 Historical Development of Constitutive Relations for Addressing Subsurface LNAPL Contamination -- 2.1 Introduction -- 2.2 Recognition of Health Effects from LNAPLs in the Subsurface -- 2.3 Predicting Subsurface LNAPL Behavior: Early Developments -- 2.4 The Parker et al. (1987) Nonhysteretic Model -- 2.5 Hysteretic Model -- 2.6 Predicting LNAPL Saturations, Volumes, and Transmissivity from Well Levels -- 2.7 Incorporating Free, Residual, and Entrapped LNAPL Fractions -- 2.8 Recent Developments. The Lenhard et al. (2017) Model -- 2.9 Layered Porous Media -- 2.10 Summary and Steps Forward -- References -- 3 Estimating LNAPL Volumes in Unimodal and Multimodal Subsurface Pore Systems -- 3.1 Introduction -- 3.2 Pore Structures -- 3.3 Water and LNAPL Saturations -- 3.4 Capillary Pressure-Saturation Curves -- 3.5 Estimating LNAPL Saturations and Volumes from In-Well Thickness -- 3.6 Conclusions -- References -- 4 The Application of Sequence Stratigraphy to the Investigation and Remediation of LNAPL-Contaminated Sites -- 4.1 Introduction -- 4.1.1 The Challenge of Subsurface Heterogeneity on LNAPL Remediation -- 4.1.2 Application of Facies Models for Predicting Subsurface Heterogeneity -- 4.2 Lithostratigraphy Versus Chronostratigraphy.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.1 The Pitfalls of Traditional Correlation Methods -- 4.2.2 Chronostratigraphy-The Preferred Approach to Stratigraphic Correlation -- 4.3 Sequence Stratigraphy-A New Paradigm for the Environmental Industry -- 4.4 Methodology -- 4.4.1 Application of Sequence Stratigraphic Principles at Contaminated Sites -- 4.4.2 Evaluation of Geologic Setting and Accommodation -- 4.4.3 Analysis of Lithologic Data -- 4.4.4 Facies Architecture Analysis -- 4.4.5 Correlation Between Boreholes -- 4.4.6 Integration with Hydrogeology and Chemistry Data -- 4.5 Case Study: Using Sequence Stratigraphy to Inform Remedial Decision-Making at a Geologically Complex LNAPL-Impacted Site -- 4.5.1 Site Background -- 4.5.2 Application of Sequence Stratigraphy -- 4.6 Summary -- 4.7 Future Directions -- References -- 5 Natural Source Zone Depletion of Petroleum Hydrocarbon NAPL -- 5.1 Overview of NSZD Process -- 5.2 Measuring NSZD Rates -- 5.2.1 Soil Gas Methods -- 5.2.2 Soil Temperature Methods -- 5.2.3 Petroleum NAPL Chemical Composition Change -- 5.2.4 Emerging Science and Future Vision -- 5.2.5 Summary and Conclusion -- References -- 6 Petroleum Vapor Intrusion -- 6.1 Introduction -- 6.2 Fate and Transport of Petroleum Vapors in the Subsurface -- 6.2.1 Natural Source Zone Depletion (NSZD) -- 6.2.2 Phase Partitioning -- 6.2.3 Molecular Diffusion -- 6.2.4 Advection and Bubble-Facilitated Transport (Ebullition) -- 6.2.5 Biodegradation During Vapor Transport -- 6.2.6 Entry into the Building: Traditional and Preferential Pathways -- 6.3 PVI Assessment -- 6.3.1 Vertical and Lateral Exclusion Distance -- 6.3.2 Analytical and Numerical Modeling -- 6.3.3 Soil Gas Sampling -- 6.3.4 Indoor Air Sampling -- 6.3.5 Risk Assessment -- 6.4 Conclusions -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7 High-Resolution Characterization of the Shallow Unconsolidated Subsurface Using Direct Push, Nuclear Magnetic Resonance, and Groundwater Tracing Technologies -- 7.1 Introduction -- 7.2 Characterization of Hydraulic Conductivity by Direct Push Approaches -- 7.2.1 Direct Push Technology -- 7.2.2 Larned Research Site -- 7.2.3 Direct Push Electrical Conductivity -- 7.2.4 Direct Push Permeameter -- 7.2.5 Direct Push Injection Logger -- 7.2.6 Hydraulic Profiling Tool -- 7.2.7 High-Resolution K (HRK) Tool -- 7.2.8 Summary of Direct Push Approaches -- 7.3 Characterization of Hydraulic Conductivity and Porosity by Nuclear Magnetic Resonance Profiling -- 7.3.1 Nuclear Magnetic Resonance -- 7.3.2 Nuclear Magnetic Resonance Application at Larned Research Site -- 7.4 Groundwater Velocity Characterization -- 7.4.1 Characterization of Velocity by Distributed Temperature Sensing -- 7.4.2 Characterization of Groundwater Velocity by Point Velocity Probe -- 7.5 Summary and Conclusions -- References -- 8 High-Resolution Delineation of Petroleum NAPLs -- 8.1 History of Subsurface Petroleum Hydrocarbon Investigation -- 8.2 High-Resolution Petroleum Hydrocarbon NAPL Screening -- 8.2.1 Capabilities Necessary to Delineate NAPL -- 8.2.2 Choosing the Appropriate Method -- 8.3 High-Density Coring and Sampling (HDCS) -- 8.3.1 Advantages and Disadvantages of HDCS -- 8.3.2 HDSC - Best Practices -- 8.3.3 HDCS Logging in Practice -- 8.4 Direct Sensing of Petroleum NAPL -- 8.5 Membrane Interface Probe (MIP) -- 8.5.1 MIP Logging in Practice -- 8.6 Laser-Induced Fluorescence (LIF) -- 8.6.1 History -- 8.6.2 LIF Family of Optical Screening Tools -- 8.6.3 NAPL Fluorescence -- 8.6.4 UVOST Waveforms -- 8.6.5 Analysis and Interpretation of LIF Logs -- 8.7 Tar-Specific Green Optical Screening Tool (TarGOST®) -- 8.8 Dye-Enhanced Laser-Induced Fluorescence (DyeLIF™).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.9 General Best Practices for LIF -- 8.10 Conclusions -- References -- 9 Biogeophysics for Optimized Characterization of Petroleum-Contaminated Sites -- 9.1 Introduction -- 9.1.1 Terminal Electron Acceptor Processes at LNAPL Impacted Sites -- 9.1.2 By-Products of Microbial-Mediated Redox Processes Drive Geophysical Property Changes -- 9.2 Geophysical Methods -- 9.2.1 Electrical Methods -- 9.2.2 Magnetic Method -- 9.3 Geophysical Applications and Case Studies -- 9.3.1 Geophysical Signatures of Changes in Pore Fluid Conductivity -- 9.3.2 Resistive Response in Saline Aquifers -- 9.3.3 Example from Cold, Permafrost Environments -- 9.3.4 Geophysical Signatures of Microbial-Mediated Mineral Precipitation -- 9.3.5 Geophysical Investigations at Bemidji, Minnesota, USA -- 9.3.6 Temporal (Time-Lapse) Geophysical Investigations of Hydrocarbon-Contaminated Sites -- 9.3.7 Other Emergent Geophysical Techniques -- 9.4 Conclusions and Key Take-Aways -- References -- 10 Molecular Biological Tools Used in Assessment and Remediation of Petroleum Hydrocarbons in Soil and Groundwater -- 10.1 Introduction -- 10.2 MBTs Used in PHC Investigation and Remediation -- 10.2.1 In-Situ Microcosms (ISMs) -- 10.2.2 Quantitative Polymerase Chain Reaction (qPCR) -- 10.2.3 Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) -- 10.2.4 Stable Isotope Probing (SIP) -- 10.2.5 Compound-Specific Isotope Analysis (CSIA) -- 10.2.6 DNA Sequencing -- 10.3 Selection of MBTs -- 10.3.1 QPCR Versus RT-QPCR -- 10.3.2 SIP Versus CSIA -- 10.3.3 QPCR Versus qPCR Arrays Versus DNA Sequencing -- 10.4 Case Studies -- 10.4.1 Transition to MNA at a Former Retail Gasoline Station -- 10.4.2 Oxygen Addition at a Former Retail Gasoline Station -- 10.4.3 Continuation of MNA at a Pipeline Release in a Remote Area -- 10.5 Cost Considerations in MBT Selection -- 10.6 Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.7 Future Directions -- References -- 11 Compound-Specific Isotope Analysis (CSIA) to Assess Remediation Performance at Petroleum Hydrocarbon-Contaminated Sites -- 11.1 Introduction -- 11.2 CSIA Principles -- 11.2.1 Background and Concepts -- 11.2.2 Isotope Analysis and Delta Notation -- 11.2.3 Isotope Fractionation Processes and Quantification -- 11.3 CSIA Implementation for Field Site Evaluation -- 11.3.1 Approach and Sampling Strategy Considerations -- 11.3.2 CSIA Sampling Requirements and Procedures -- 11.4 CSIA Field Data -- 11.4.1 Interpretation Considerations and Pitfalls -- 11.4.2 Assessment Approach -- 11.5 Examples of Field Case Applications -- 11.5.1 In situ Chemical Oxidation Application -- 11.5.2 Bioremediation Application -- 11.6 Summary and Future Development -- References -- 12 LNAPL Transmissivity, Mobility and Recoverability-Utility and Complications -- 12.1 Introduction -- 12.2 Quantitative Definition of Tn -- 12.3 Theoretical Implications of Tn Factors -- 12.4 Effect of Soil Type -- 12.5 Effect of LNAPL Properties -- 12.6 Transience of LNAPL Transmissivity -- 12.7 Summary of Theoretical Observations -- 12.8 Estimation of LNAPL Transmissivity -- 12.9 Field and Laboratory Testing Observations -- 12.10 Intrinsic Permeability and Fluid Type -- 12.11 Interfacial Tensions -- 12.12 Real-World Heterogeneity -- 12.13 Tn Field Observations -- 12.14 The (F)Utility of LNAPL Recovery -- 12.15 Recoverability Assessment of a Recent Release -- 12.15.1 General Site Background and Findings -- 12.15.2 LNAPL Mobility and Recoverability -- 12.16 Laboratory-Derived versus Field LNAPL Transmissivity -- 12.17 Flux and Longevity Considerations on LNAPL Recovery -- 12.18 Conclusions -- References -- 13 Incorporating Natural Source Zone Depletion (NSZD) into the Site Management Strategy -- 13.1 Introduction -- 13.2 Overview of Case Study Site Setting.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.3 Importance of Site Risk Profile and Regulatory Framework.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gatsios, Evangelos.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lenhard, Robert J.</subfield><subfield code="q">(Robert James)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Atekwana, Estella A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naidu, Ravi.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-031-34446-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Environmental contamination remediation and management.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-06-15 03:31:57 Europe/Vienna</subfield><subfield code="d">00</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2023-12-04 18:28:31 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5351918000004498&amp;Force_direct=true</subfield><subfield code="Z">5351918000004498</subfield><subfield code="b">Available</subfield><subfield code="8">5351918000004498</subfield></datafield></record></collection>