Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons.

Saved in:
Bibliographic Details
Superior document:Environmental Contamination Remediation and Management Series.
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2023.
©2024.
Year of Publication:2023
Edition:First edition.
Language:English
Series:Environmental contamination remediation and management.
Physical Description:1 online resource (675 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 01301nam a22003733i 4500
001 993640360704498
005 20231221165043.0
006 m o d |
007 cr#|||||||||||
008 231218s2023 xx o ||||0 eng d
020 |a 3-031-34447-2 
035 |a (CKB)29133410200041 
035 |a (MiAaPQ)EBC31016762 
035 |a (Au-PeEL)EBL31016762 
035 |a (OCoLC)1415892655 
035 |a (EXLCZ)9929133410200041 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a G1-922 
100 1 |a García-Rincón, Jonás. 
245 1 0 |a Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons. 
250 |a First edition. 
264 1 |a Cham :  |b Springer International Publishing AG,  |c 2023. 
264 4 |c ©2024. 
300 |a 1 online resource (675 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Environmental Contamination Remediation and Management Series. 
588 |a Description based on publisher supplied metadata and other sources. 
505 0 |a Intro -- Preface -- Reviewers -- Contents -- Contributors -- Acronyms and Symbols -- 1 Complexities of Petroleum Hydrocarbon Contaminated Sites -- 1.1 Introduction -- 1.2 Problem Recognition and Regulatory Environment -- 1.2.1 Problem recognition-The Case of Large Oil Spills -- 1.2.2 Regulatory Frameworks -- 1.2.3 Toward Improved Management and Regulation of PHC-Contaminated Sites -- 1.3 Multiphase Flow Mechanics -- 1.4 Complexities Associated with PHC NAPL Composition -- 1.5 Geological and Hydrogeological Concepts that Help Tackle LNAPL Management Challenges -- 1.6 Summary -- References -- 2 Historical Development of Constitutive Relations for Addressing Subsurface LNAPL Contamination -- 2.1 Introduction -- 2.2 Recognition of Health Effects from LNAPLs in the Subsurface -- 2.3 Predicting Subsurface LNAPL Behavior: Early Developments -- 2.4 The Parker et al. (1987) Nonhysteretic Model -- 2.5 Hysteretic Model -- 2.6 Predicting LNAPL Saturations, Volumes, and Transmissivity from Well Levels -- 2.7 Incorporating Free, Residual, and Entrapped LNAPL Fractions -- 2.8 Recent Developments. The Lenhard et al. (2017) Model -- 2.9 Layered Porous Media -- 2.10 Summary and Steps Forward -- References -- 3 Estimating LNAPL Volumes in Unimodal and Multimodal Subsurface Pore Systems -- 3.1 Introduction -- 3.2 Pore Structures -- 3.3 Water and LNAPL Saturations -- 3.4 Capillary Pressure-Saturation Curves -- 3.5 Estimating LNAPL Saturations and Volumes from In-Well Thickness -- 3.6 Conclusions -- References -- 4 The Application of Sequence Stratigraphy to the Investigation and Remediation of LNAPL-Contaminated Sites -- 4.1 Introduction -- 4.1.1 The Challenge of Subsurface Heterogeneity on LNAPL Remediation -- 4.1.2 Application of Facies Models for Predicting Subsurface Heterogeneity -- 4.2 Lithostratigraphy Versus Chronostratigraphy. 
505 8 |a 4.2.1 The Pitfalls of Traditional Correlation Methods -- 4.2.2 Chronostratigraphy-The Preferred Approach to Stratigraphic Correlation -- 4.3 Sequence Stratigraphy-A New Paradigm for the Environmental Industry -- 4.4 Methodology -- 4.4.1 Application of Sequence Stratigraphic Principles at Contaminated Sites -- 4.4.2 Evaluation of Geologic Setting and Accommodation -- 4.4.3 Analysis of Lithologic Data -- 4.4.4 Facies Architecture Analysis -- 4.4.5 Correlation Between Boreholes -- 4.4.6 Integration with Hydrogeology and Chemistry Data -- 4.5 Case Study: Using Sequence Stratigraphy to Inform Remedial Decision-Making at a Geologically Complex LNAPL-Impacted Site -- 4.5.1 Site Background -- 4.5.2 Application of Sequence Stratigraphy -- 4.6 Summary -- 4.7 Future Directions -- References -- 5 Natural Source Zone Depletion of Petroleum Hydrocarbon NAPL -- 5.1 Overview of NSZD Process -- 5.2 Measuring NSZD Rates -- 5.2.1 Soil Gas Methods -- 5.2.2 Soil Temperature Methods -- 5.2.3 Petroleum NAPL Chemical Composition Change -- 5.2.4 Emerging Science and Future Vision -- 5.2.5 Summary and Conclusion -- References -- 6 Petroleum Vapor Intrusion -- 6.1 Introduction -- 6.2 Fate and Transport of Petroleum Vapors in the Subsurface -- 6.2.1 Natural Source Zone Depletion (NSZD) -- 6.2.2 Phase Partitioning -- 6.2.3 Molecular Diffusion -- 6.2.4 Advection and Bubble-Facilitated Transport (Ebullition) -- 6.2.5 Biodegradation During Vapor Transport -- 6.2.6 Entry into the Building: Traditional and Preferential Pathways -- 6.3 PVI Assessment -- 6.3.1 Vertical and Lateral Exclusion Distance -- 6.3.2 Analytical and Numerical Modeling -- 6.3.3 Soil Gas Sampling -- 6.3.4 Indoor Air Sampling -- 6.3.5 Risk Assessment -- 6.4 Conclusions -- References. 
505 8 |a 7 High-Resolution Characterization of the Shallow Unconsolidated Subsurface Using Direct Push, Nuclear Magnetic Resonance, and Groundwater Tracing Technologies -- 7.1 Introduction -- 7.2 Characterization of Hydraulic Conductivity by Direct Push Approaches -- 7.2.1 Direct Push Technology -- 7.2.2 Larned Research Site -- 7.2.3 Direct Push Electrical Conductivity -- 7.2.4 Direct Push Permeameter -- 7.2.5 Direct Push Injection Logger -- 7.2.6 Hydraulic Profiling Tool -- 7.2.7 High-Resolution K (HRK) Tool -- 7.2.8 Summary of Direct Push Approaches -- 7.3 Characterization of Hydraulic Conductivity and Porosity by Nuclear Magnetic Resonance Profiling -- 7.3.1 Nuclear Magnetic Resonance -- 7.3.2 Nuclear Magnetic Resonance Application at Larned Research Site -- 7.4 Groundwater Velocity Characterization -- 7.4.1 Characterization of Velocity by Distributed Temperature Sensing -- 7.4.2 Characterization of Groundwater Velocity by Point Velocity Probe -- 7.5 Summary and Conclusions -- References -- 8 High-Resolution Delineation of Petroleum NAPLs -- 8.1 History of Subsurface Petroleum Hydrocarbon Investigation -- 8.2 High-Resolution Petroleum Hydrocarbon NAPL Screening -- 8.2.1 Capabilities Necessary to Delineate NAPL -- 8.2.2 Choosing the Appropriate Method -- 8.3 High-Density Coring and Sampling (HDCS) -- 8.3.1 Advantages and Disadvantages of HDCS -- 8.3.2 HDSC - Best Practices -- 8.3.3 HDCS Logging in Practice -- 8.4 Direct Sensing of Petroleum NAPL -- 8.5 Membrane Interface Probe (MIP) -- 8.5.1 MIP Logging in Practice -- 8.6 Laser-Induced Fluorescence (LIF) -- 8.6.1 History -- 8.6.2 LIF Family of Optical Screening Tools -- 8.6.3 NAPL Fluorescence -- 8.6.4 UVOST Waveforms -- 8.6.5 Analysis and Interpretation of LIF Logs -- 8.7 Tar-Specific Green Optical Screening Tool (TarGOST®) -- 8.8 Dye-Enhanced Laser-Induced Fluorescence (DyeLIF™). 
505 8 |a 8.9 General Best Practices for LIF -- 8.10 Conclusions -- References -- 9 Biogeophysics for Optimized Characterization of Petroleum-Contaminated Sites -- 9.1 Introduction -- 9.1.1 Terminal Electron Acceptor Processes at LNAPL Impacted Sites -- 9.1.2 By-Products of Microbial-Mediated Redox Processes Drive Geophysical Property Changes -- 9.2 Geophysical Methods -- 9.2.1 Electrical Methods -- 9.2.2 Magnetic Method -- 9.3 Geophysical Applications and Case Studies -- 9.3.1 Geophysical Signatures of Changes in Pore Fluid Conductivity -- 9.3.2 Resistive Response in Saline Aquifers -- 9.3.3 Example from Cold, Permafrost Environments -- 9.3.4 Geophysical Signatures of Microbial-Mediated Mineral Precipitation -- 9.3.5 Geophysical Investigations at Bemidji, Minnesota, USA -- 9.3.6 Temporal (Time-Lapse) Geophysical Investigations of Hydrocarbon-Contaminated Sites -- 9.3.7 Other Emergent Geophysical Techniques -- 9.4 Conclusions and Key Take-Aways -- References -- 10 Molecular Biological Tools Used in Assessment and Remediation of Petroleum Hydrocarbons in Soil and Groundwater -- 10.1 Introduction -- 10.2 MBTs Used in PHC Investigation and Remediation -- 10.2.1 In-Situ Microcosms (ISMs) -- 10.2.2 Quantitative Polymerase Chain Reaction (qPCR) -- 10.2.3 Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) -- 10.2.4 Stable Isotope Probing (SIP) -- 10.2.5 Compound-Specific Isotope Analysis (CSIA) -- 10.2.6 DNA Sequencing -- 10.3 Selection of MBTs -- 10.3.1 QPCR Versus RT-QPCR -- 10.3.2 SIP Versus CSIA -- 10.3.3 QPCR Versus qPCR Arrays Versus DNA Sequencing -- 10.4 Case Studies -- 10.4.1 Transition to MNA at a Former Retail Gasoline Station -- 10.4.2 Oxygen Addition at a Former Retail Gasoline Station -- 10.4.3 Continuation of MNA at a Pipeline Release in a Remote Area -- 10.5 Cost Considerations in MBT Selection -- 10.6 Summary. 
505 8 |a 10.7 Future Directions -- References -- 11 Compound-Specific Isotope Analysis (CSIA) to Assess Remediation Performance at Petroleum Hydrocarbon-Contaminated Sites -- 11.1 Introduction -- 11.2 CSIA Principles -- 11.2.1 Background and Concepts -- 11.2.2 Isotope Analysis and Delta Notation -- 11.2.3 Isotope Fractionation Processes and Quantification -- 11.3 CSIA Implementation for Field Site Evaluation -- 11.3.1 Approach and Sampling Strategy Considerations -- 11.3.2 CSIA Sampling Requirements and Procedures -- 11.4 CSIA Field Data -- 11.4.1 Interpretation Considerations and Pitfalls -- 11.4.2 Assessment Approach -- 11.5 Examples of Field Case Applications -- 11.5.1 In situ Chemical Oxidation Application -- 11.5.2 Bioremediation Application -- 11.6 Summary and Future Development -- References -- 12 LNAPL Transmissivity, Mobility and Recoverability-Utility and Complications -- 12.1 Introduction -- 12.2 Quantitative Definition of Tn -- 12.3 Theoretical Implications of Tn Factors -- 12.4 Effect of Soil Type -- 12.5 Effect of LNAPL Properties -- 12.6 Transience of LNAPL Transmissivity -- 12.7 Summary of Theoretical Observations -- 12.8 Estimation of LNAPL Transmissivity -- 12.9 Field and Laboratory Testing Observations -- 12.10 Intrinsic Permeability and Fluid Type -- 12.11 Interfacial Tensions -- 12.12 Real-World Heterogeneity -- 12.13 Tn Field Observations -- 12.14 The (F)Utility of LNAPL Recovery -- 12.15 Recoverability Assessment of a Recent Release -- 12.15.1 General Site Background and Findings -- 12.15.2 LNAPL Mobility and Recoverability -- 12.16 Laboratory-Derived versus Field LNAPL Transmissivity -- 12.17 Flux and Longevity Considerations on LNAPL Recovery -- 12.18 Conclusions -- References -- 13 Incorporating Natural Source Zone Depletion (NSZD) into the Site Management Strategy -- 13.1 Introduction -- 13.2 Overview of Case Study Site Setting. 
505 8 |a 13.3 Importance of Site Risk Profile and Regulatory Framework. 
700 1 |a Gatsios, Evangelos. 
700 1 |a Lenhard, Robert J.  |q (Robert James) 
700 1 |a Atekwana, Estella A. 
700 1 |a Naidu, Ravi. 
776 |z 3-031-34446-4 
830 0 |a Environmental contamination remediation and management. 
906 |a BOOK 
ADM |b 2024-06-15 03:31:57 Europe/Vienna  |d 00  |f system  |c marc21  |a 2023-12-04 18:28:31 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5351918000004498&Force_direct=true  |Z 5351918000004498  |b Available  |8 5351918000004498