Silicon-germanium heterojunction bipolar transistors for mm-wave systems : : technology, modeling and circuit applications / / editors, Niccolo Rinaldi, Michael Schroter.

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer e...

Full description

Saved in:
Bibliographic Details
Superior document:River Publishers series in electronic materials and devices
TeilnehmendeR:
Place / Publishing House:Gistrup, Denmark ;, Delft, Netherlands : : River Publishers,, 2018.
©2018
Year of Publication:2018
Edition:1st ed.
Language:English
Series:River Publishers series in electronic materials and devices.
Physical Description:1 online resource (378 pages).
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Front Cover
  • Half Title page
  • RIVER PUBLISHERS SERIES IN ELECTRONIC MATERIALS AND DEVICES
  • Title Page - Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications
  • Copyright page
  • Contents
  • Preface
  • Acknowledgements
  • List of Contributors
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • Introduction
  • Motivation and Objectives of the DOTSEVEN Project
  • Approach toward Achieving the Ambitious Goals
  • Overview of Results and Their Impact
  • References
  • Chapter 1 - SiGe HBT Technology
  • 1.1 Introduction
  • 1.2 HBT Performance Factors
  • 1.3 HBT Device and Process Architectures Explored in the DOTSEVEN Project
  • 1.3.1 Selective Epitaxial Growth of the Base
  • 1.3.1.1 DPSA-SEG device architecture
  • 1.3.1.2 Approaches to overcome limitations of the DPSA-SEG architecture
  • 1.3.2 Non-selective Epitaxial Growth of the Base
  • 1.4 Optimization of the Vertical Doping Profile
  • 1.5 Optimization towards 700 GHz fMAX
  • 1.6 Summary
  • References
  • Chapter 2 - Device Simulation
  • 2.1 Numerical Simulation
  • 2.2 Device Simulation
  • 2.2.1 TCAD Device Optimization
  • 2.2.2 Deterministic BTE Solvers
  • 2.2.3 Drift-diffusion and Hydrodynamic Transport Models
  • 2.2.4 Simulation Examples
  • 2.2.4.1 DD simulation
  • 2.2.4.2 HD simulation
  • 2.2.4.3 Effects beyond DD and HD transport
  • 2.2.4.4 Comparison with experimental data
  • 2.3 Advanced Electro-thermal Simulation
  • 2.3.1 Carrier-Phonon System in SiGe HBTs
  • 2.3.2 Deterministic and Self-consistent Electrothermal Simulation Approach
  • 2.3.3 Hot Phonon Effects in a Calibrated System
  • 2.3.4 Thermal Resistance Extraction from the Simulated DC Characteristics
  • 2.4 Microscopic Simulation of Hot-carrier Degradation
  • 2.4.1 Physics of Hot-carrier Degradation
  • 2.4.2 Modeling of Hot-carrier Effects.
  • 2.4.3 Simulation of SiGe HBTs under Stress Conditions Close to the SOA Limit
  • References
  • Chapter 3 - SiGe HBT Compact Modeling
  • 3.1 Introduction
  • 3.2 Overview of HICUM Level 2
  • 3.3 Modeling of the Quasi-Static Transfer Current
  • 3.3.1 Basics of the GICCR
  • 3.3.2 SiGe HBT Extensions
  • 3.3.3 Temperature Dependence
  • 3.4 Charge Storage
  • 3.4.1 Critical Current
  • 3.4.2 SiGe Heterojunction Barrier
  • 3.5 Intra-Device Substrate Coupling
  • 3.6 SiGe HBT Parameter Extraction
  • 3.6.1 Extraction of Series Resistances
  • 3.6.2 Extraction of the Transfer Current Parameters
  • 3.6.3 Physics-Based Parameter Scaling
  • 3.6.3.1 Standard geometry scaling equation
  • 3.6.3.2 Generalized scaling equations
  • 3.7 Compact Model Application to Experimental Data
  • References
  • Chapter 4 - (Sub)mm-wave Calibration
  • 4.1 Introduction
  • 4.2 Multi-mode Propagation and Calibration Transfer at mm-wave
  • 4.2.1 Parallel Plate Waveguide Mode
  • 4.2.2 Surface Wave Modes: TM0 and TE1
  • 4.2.3 Electrically Thin Substrates
  • 4.2.4 Calibration Transfer
  • 4.3 Direct On-wafer Calibration
  • 4.3.1 Characteristic Impedance Extraction of Transmission Lines
  • 4.4 Direct DUT-plane Calibration
  • 4.5 Conclusion
  • References
  • Chapter 5 - Reliability
  • 5.1 Mixed-mode Stress Tests
  • 5.1.1 Introduction to Hot-Carrier Degradation under MM Stress
  • 5.1.2 Long-term MM Stress Characterization on IHP Devices
  • 5.1.3 Medium-term MM Stress Characterization on IFX Devices
  • 5.2 Long-term Stress Tests
  • 5.2.1 Experimental Setup
  • 5.2.2 Long-term Degradation Test Results
  • 5.2.3 Low-frequency Noise Characterization
  • 5.3 Compact Modeling of Hot-Carrier Degradation
  • 5.3.1 Empirical Equations by IHP
  • 5.3.2 HICUM-based Model
  • 5.4 Thermal Effects
  • 5.4.1 Experimental RTH Extraction
  • 5.4.2 Thermal Simulation
  • 5.4.3 Scaling Considerations
  • References.
  • Chapter 6 - Millimeter-wave Circuits and Applications
  • 6.1 Millimeter-wave Benchmark Circuits and Building Blocks
  • 6.1.1 Benchmark Circuits
  • 6.1.2 Circuit Building Blocks
  • 6.1.2.1 W-band low-noise amplifier (LNA) with 0.5 V supply voltage
  • 6.1.2.2 W-band low-power frequency tripler
  • 6.2 Millimeter-wave and Terahertz Systems
  • 6.2.1 240 GHz SiGe Chipset
  • 6.2.1.1 Wideband LO signal generation
  • 6.2.1.2 Transmitter building blocks
  • 6.2.1.3 Receiver building blocks
  • 6.2.1.4 Antenna design
  • 6.2.1.5 Packaging and high-speed PCB design
  • 6.2.1.6 Tx and Rx characterization
  • 6.2.1.7 Ultra-high data rate wireless communication
  • 6.2.2 210-270 GHz Circularly Polarized Radar
  • 6.2.3 0.5 THz Computed Tomography
  • 6.2.3.1 Components
  • 6.2.3.2 Detector design
  • 6.2.3.3 THz-CT results
  • References
  • Chapter 7 - Future of SiGe HBT Technology and Its Applications
  • 7.1 Introduction
  • 7.2 Technology Comparison
  • 7.3 Future Millimeter-wave and THz Applications
  • 7.3.1 Communication
  • 7.3.2 Radar
  • 7.3.3 Imaging and Sensing
  • References
  • Index
  • About the Editors
  • Back Cover.