Silicon-germanium heterojunction bipolar transistors for mm-wave systems : : technology, modeling and circuit applications / / editors, Niccolo Rinaldi, Michael Schroter.

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer e...

Full description

Saved in:
Bibliographic Details
Superior document:River Publishers series in electronic materials and devices
TeilnehmendeR:
Place / Publishing House:Gistrup, Denmark ;, Delft, Netherlands : : River Publishers,, 2018.
©2018
Year of Publication:2018
Edition:1st ed.
Language:English
Series:River Publishers series in electronic materials and devices.
Physical Description:1 online resource (378 pages).
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993570975804498
ctrlnum (CKB)4100000004817454
(MiAaPQ)EBC5376760
(MiAaPQ)EBC30251855
(Au-PeEL)EBL30251855
(oapen)https://directory.doabooks.org/handle/20.500.12854/94299
(MiAaPQ)EBC7244913
(Au-PeEL)EBL7244913
(EXLCZ)994100000004817454
collection bib_alma
record_format marc
spelling Silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications / editors, Niccolo Rinaldi, Michael Schroter.
1st ed.
Gistrup, Denmark ; Delft, Netherlands : River Publishers, 2018.
©2018
1 online resource (378 pages).
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
River Publishers series in electronic materials and devices
The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.
English
European Commission
Description based on print version record.
Front Cover -- Half Title page -- RIVER PUBLISHERS SERIES IN ELECTRONIC MATERIALS AND DEVICES -- Title Page - Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications -- Copyright page -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Introduction -- Motivation and Objectives of the DOTSEVEN Project -- Approach toward Achieving the Ambitious Goals -- Overview of Results and Their Impact -- References -- Chapter 1 - SiGe HBT Technology -- 1.1 Introduction -- 1.2 HBT Performance Factors -- 1.3 HBT Device and Process Architectures Explored in the DOTSEVEN Project -- 1.3.1 Selective Epitaxial Growth of the Base -- 1.3.1.1 DPSA-SEG device architecture -- 1.3.1.2 Approaches to overcome limitations of the DPSA-SEG architecture -- 1.3.2 Non-selective Epitaxial Growth of the Base -- 1.4 Optimization of the Vertical Doping Profile -- 1.5 Optimization towards 700 GHz fMAX -- 1.6 Summary -- References -- Chapter 2 - Device Simulation -- 2.1 Numerical Simulation -- 2.2 Device Simulation -- 2.2.1 TCAD Device Optimization -- 2.2.2 Deterministic BTE Solvers -- 2.2.3 Drift-diffusion and Hydrodynamic Transport Models -- 2.2.4 Simulation Examples -- 2.2.4.1 DD simulation -- 2.2.4.2 HD simulation -- 2.2.4.3 Effects beyond DD and HD transport -- 2.2.4.4 Comparison with experimental data -- 2.3 Advanced Electro-thermal Simulation -- 2.3.1 Carrier-Phonon System in SiGe HBTs -- 2.3.2 Deterministic and Self-consistent Electrothermal Simulation Approach -- 2.3.3 Hot Phonon Effects in a Calibrated System -- 2.3.4 Thermal Resistance Extraction from the Simulated DC Characteristics -- 2.4 Microscopic Simulation of Hot-carrier Degradation -- 2.4.1 Physics of Hot-carrier Degradation -- 2.4.2 Modeling of Hot-carrier Effects.
2.4.3 Simulation of SiGe HBTs under Stress Conditions Close to the SOA Limit -- References -- Chapter 3 - SiGe HBT Compact Modeling -- 3.1 Introduction -- 3.2 Overview of HICUM Level 2 -- 3.3 Modeling of the Quasi-Static Transfer Current -- 3.3.1 Basics of the GICCR -- 3.3.2 SiGe HBT Extensions -- 3.3.3 Temperature Dependence -- 3.4 Charge Storage -- 3.4.1 Critical Current -- 3.4.2 SiGe Heterojunction Barrier -- 3.5 Intra-Device Substrate Coupling -- 3.6 SiGe HBT Parameter Extraction -- 3.6.1 Extraction of Series Resistances -- 3.6.2 Extraction of the Transfer Current Parameters -- 3.6.3 Physics-Based Parameter Scaling -- 3.6.3.1 Standard geometry scaling equation -- 3.6.3.2 Generalized scaling equations -- 3.7 Compact Model Application to Experimental Data -- References -- Chapter 4 - (Sub)mm-wave Calibration -- 4.1 Introduction -- 4.2 Multi-mode Propagation and Calibration Transfer at mm-wave -- 4.2.1 Parallel Plate Waveguide Mode -- 4.2.2 Surface Wave Modes: TM0 and TE1 -- 4.2.3 Electrically Thin Substrates -- 4.2.4 Calibration Transfer -- 4.3 Direct On-wafer Calibration -- 4.3.1 Characteristic Impedance Extraction of Transmission Lines -- 4.4 Direct DUT-plane Calibration -- 4.5 Conclusion -- References -- Chapter 5 - Reliability -- 5.1 Mixed-mode Stress Tests -- 5.1.1 Introduction to Hot-Carrier Degradation under MM Stress -- 5.1.2 Long-term MM Stress Characterization on IHP Devices -- 5.1.3 Medium-term MM Stress Characterization on IFX Devices -- 5.2 Long-term Stress Tests -- 5.2.1 Experimental Setup -- 5.2.2 Long-term Degradation Test Results -- 5.2.3 Low-frequency Noise Characterization -- 5.3 Compact Modeling of Hot-Carrier Degradation -- 5.3.1 Empirical Equations by IHP -- 5.3.2 HICUM-based Model -- 5.4 Thermal Effects -- 5.4.1 Experimental RTH Extraction -- 5.4.2 Thermal Simulation -- 5.4.3 Scaling Considerations -- References.
Chapter 6 - Millimeter-wave Circuits and Applications -- 6.1 Millimeter-wave Benchmark Circuits and Building Blocks -- 6.1.1 Benchmark Circuits -- 6.1.2 Circuit Building Blocks -- 6.1.2.1 W-band low-noise amplifier (LNA) with 0.5 V supply voltage -- 6.1.2.2 W-band low-power frequency tripler -- 6.2 Millimeter-wave and Terahertz Systems -- 6.2.1 240 GHz SiGe Chipset -- 6.2.1.1 Wideband LO signal generation -- 6.2.1.2 Transmitter building blocks -- 6.2.1.3 Receiver building blocks -- 6.2.1.4 Antenna design -- 6.2.1.5 Packaging and high-speed PCB design -- 6.2.1.6 Tx and Rx characterization -- 6.2.1.7 Ultra-high data rate wireless communication -- 6.2.2 210-270 GHz Circularly Polarized Radar -- 6.2.3 0.5 THz Computed Tomography -- 6.2.3.1 Components -- 6.2.3.2 Detector design -- 6.2.3.3 THz-CT results -- References -- Chapter 7 - Future of SiGe HBT Technology and Its Applications -- 7.1 Introduction -- 7.2 Technology Comparison -- 7.3 Future Millimeter-wave and THz Applications -- 7.3.1 Communication -- 7.3.2 Radar -- 7.3.3 Imaging and Sensing -- References -- Index -- About the Editors -- Back Cover.
Includes bibliographical references and index.
Bipolar transistors.
Silicon alloys.
87-93519-61-3
Rinaldi, Niccolo, editor.
Schroter, Michael, editor.
River Publishers series in electronic materials and devices.
language English
format eBook
author2 Rinaldi, Niccolo,
Schroter, Michael,
author_facet Rinaldi, Niccolo,
Schroter, Michael,
author2_variant n r nr
m s ms
author2_role TeilnehmendeR
TeilnehmendeR
title Silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications /
spellingShingle Silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications /
River Publishers series in electronic materials and devices
Front Cover -- Half Title page -- RIVER PUBLISHERS SERIES IN ELECTRONIC MATERIALS AND DEVICES -- Title Page - Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications -- Copyright page -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Introduction -- Motivation and Objectives of the DOTSEVEN Project -- Approach toward Achieving the Ambitious Goals -- Overview of Results and Their Impact -- References -- Chapter 1 - SiGe HBT Technology -- 1.1 Introduction -- 1.2 HBT Performance Factors -- 1.3 HBT Device and Process Architectures Explored in the DOTSEVEN Project -- 1.3.1 Selective Epitaxial Growth of the Base -- 1.3.1.1 DPSA-SEG device architecture -- 1.3.1.2 Approaches to overcome limitations of the DPSA-SEG architecture -- 1.3.2 Non-selective Epitaxial Growth of the Base -- 1.4 Optimization of the Vertical Doping Profile -- 1.5 Optimization towards 700 GHz fMAX -- 1.6 Summary -- References -- Chapter 2 - Device Simulation -- 2.1 Numerical Simulation -- 2.2 Device Simulation -- 2.2.1 TCAD Device Optimization -- 2.2.2 Deterministic BTE Solvers -- 2.2.3 Drift-diffusion and Hydrodynamic Transport Models -- 2.2.4 Simulation Examples -- 2.2.4.1 DD simulation -- 2.2.4.2 HD simulation -- 2.2.4.3 Effects beyond DD and HD transport -- 2.2.4.4 Comparison with experimental data -- 2.3 Advanced Electro-thermal Simulation -- 2.3.1 Carrier-Phonon System in SiGe HBTs -- 2.3.2 Deterministic and Self-consistent Electrothermal Simulation Approach -- 2.3.3 Hot Phonon Effects in a Calibrated System -- 2.3.4 Thermal Resistance Extraction from the Simulated DC Characteristics -- 2.4 Microscopic Simulation of Hot-carrier Degradation -- 2.4.1 Physics of Hot-carrier Degradation -- 2.4.2 Modeling of Hot-carrier Effects.
2.4.3 Simulation of SiGe HBTs under Stress Conditions Close to the SOA Limit -- References -- Chapter 3 - SiGe HBT Compact Modeling -- 3.1 Introduction -- 3.2 Overview of HICUM Level 2 -- 3.3 Modeling of the Quasi-Static Transfer Current -- 3.3.1 Basics of the GICCR -- 3.3.2 SiGe HBT Extensions -- 3.3.3 Temperature Dependence -- 3.4 Charge Storage -- 3.4.1 Critical Current -- 3.4.2 SiGe Heterojunction Barrier -- 3.5 Intra-Device Substrate Coupling -- 3.6 SiGe HBT Parameter Extraction -- 3.6.1 Extraction of Series Resistances -- 3.6.2 Extraction of the Transfer Current Parameters -- 3.6.3 Physics-Based Parameter Scaling -- 3.6.3.1 Standard geometry scaling equation -- 3.6.3.2 Generalized scaling equations -- 3.7 Compact Model Application to Experimental Data -- References -- Chapter 4 - (Sub)mm-wave Calibration -- 4.1 Introduction -- 4.2 Multi-mode Propagation and Calibration Transfer at mm-wave -- 4.2.1 Parallel Plate Waveguide Mode -- 4.2.2 Surface Wave Modes: TM0 and TE1 -- 4.2.3 Electrically Thin Substrates -- 4.2.4 Calibration Transfer -- 4.3 Direct On-wafer Calibration -- 4.3.1 Characteristic Impedance Extraction of Transmission Lines -- 4.4 Direct DUT-plane Calibration -- 4.5 Conclusion -- References -- Chapter 5 - Reliability -- 5.1 Mixed-mode Stress Tests -- 5.1.1 Introduction to Hot-Carrier Degradation under MM Stress -- 5.1.2 Long-term MM Stress Characterization on IHP Devices -- 5.1.3 Medium-term MM Stress Characterization on IFX Devices -- 5.2 Long-term Stress Tests -- 5.2.1 Experimental Setup -- 5.2.2 Long-term Degradation Test Results -- 5.2.3 Low-frequency Noise Characterization -- 5.3 Compact Modeling of Hot-Carrier Degradation -- 5.3.1 Empirical Equations by IHP -- 5.3.2 HICUM-based Model -- 5.4 Thermal Effects -- 5.4.1 Experimental RTH Extraction -- 5.4.2 Thermal Simulation -- 5.4.3 Scaling Considerations -- References.
Chapter 6 - Millimeter-wave Circuits and Applications -- 6.1 Millimeter-wave Benchmark Circuits and Building Blocks -- 6.1.1 Benchmark Circuits -- 6.1.2 Circuit Building Blocks -- 6.1.2.1 W-band low-noise amplifier (LNA) with 0.5 V supply voltage -- 6.1.2.2 W-band low-power frequency tripler -- 6.2 Millimeter-wave and Terahertz Systems -- 6.2.1 240 GHz SiGe Chipset -- 6.2.1.1 Wideband LO signal generation -- 6.2.1.2 Transmitter building blocks -- 6.2.1.3 Receiver building blocks -- 6.2.1.4 Antenna design -- 6.2.1.5 Packaging and high-speed PCB design -- 6.2.1.6 Tx and Rx characterization -- 6.2.1.7 Ultra-high data rate wireless communication -- 6.2.2 210-270 GHz Circularly Polarized Radar -- 6.2.3 0.5 THz Computed Tomography -- 6.2.3.1 Components -- 6.2.3.2 Detector design -- 6.2.3.3 THz-CT results -- References -- Chapter 7 - Future of SiGe HBT Technology and Its Applications -- 7.1 Introduction -- 7.2 Technology Comparison -- 7.3 Future Millimeter-wave and THz Applications -- 7.3.1 Communication -- 7.3.2 Radar -- 7.3.3 Imaging and Sensing -- References -- Index -- About the Editors -- Back Cover.
title_sub technology, modeling and circuit applications /
title_full Silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications / editors, Niccolo Rinaldi, Michael Schroter.
title_fullStr Silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications / editors, Niccolo Rinaldi, Michael Schroter.
title_full_unstemmed Silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications / editors, Niccolo Rinaldi, Michael Schroter.
title_auth Silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications /
title_new Silicon-germanium heterojunction bipolar transistors for mm-wave systems :
title_sort silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications /
series River Publishers series in electronic materials and devices
series2 River Publishers series in electronic materials and devices
publisher River Publishers,
publishDate 2018
physical 1 online resource (378 pages).
edition 1st ed.
contents Front Cover -- Half Title page -- RIVER PUBLISHERS SERIES IN ELECTRONIC MATERIALS AND DEVICES -- Title Page - Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications -- Copyright page -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Introduction -- Motivation and Objectives of the DOTSEVEN Project -- Approach toward Achieving the Ambitious Goals -- Overview of Results and Their Impact -- References -- Chapter 1 - SiGe HBT Technology -- 1.1 Introduction -- 1.2 HBT Performance Factors -- 1.3 HBT Device and Process Architectures Explored in the DOTSEVEN Project -- 1.3.1 Selective Epitaxial Growth of the Base -- 1.3.1.1 DPSA-SEG device architecture -- 1.3.1.2 Approaches to overcome limitations of the DPSA-SEG architecture -- 1.3.2 Non-selective Epitaxial Growth of the Base -- 1.4 Optimization of the Vertical Doping Profile -- 1.5 Optimization towards 700 GHz fMAX -- 1.6 Summary -- References -- Chapter 2 - Device Simulation -- 2.1 Numerical Simulation -- 2.2 Device Simulation -- 2.2.1 TCAD Device Optimization -- 2.2.2 Deterministic BTE Solvers -- 2.2.3 Drift-diffusion and Hydrodynamic Transport Models -- 2.2.4 Simulation Examples -- 2.2.4.1 DD simulation -- 2.2.4.2 HD simulation -- 2.2.4.3 Effects beyond DD and HD transport -- 2.2.4.4 Comparison with experimental data -- 2.3 Advanced Electro-thermal Simulation -- 2.3.1 Carrier-Phonon System in SiGe HBTs -- 2.3.2 Deterministic and Self-consistent Electrothermal Simulation Approach -- 2.3.3 Hot Phonon Effects in a Calibrated System -- 2.3.4 Thermal Resistance Extraction from the Simulated DC Characteristics -- 2.4 Microscopic Simulation of Hot-carrier Degradation -- 2.4.1 Physics of Hot-carrier Degradation -- 2.4.2 Modeling of Hot-carrier Effects.
2.4.3 Simulation of SiGe HBTs under Stress Conditions Close to the SOA Limit -- References -- Chapter 3 - SiGe HBT Compact Modeling -- 3.1 Introduction -- 3.2 Overview of HICUM Level 2 -- 3.3 Modeling of the Quasi-Static Transfer Current -- 3.3.1 Basics of the GICCR -- 3.3.2 SiGe HBT Extensions -- 3.3.3 Temperature Dependence -- 3.4 Charge Storage -- 3.4.1 Critical Current -- 3.4.2 SiGe Heterojunction Barrier -- 3.5 Intra-Device Substrate Coupling -- 3.6 SiGe HBT Parameter Extraction -- 3.6.1 Extraction of Series Resistances -- 3.6.2 Extraction of the Transfer Current Parameters -- 3.6.3 Physics-Based Parameter Scaling -- 3.6.3.1 Standard geometry scaling equation -- 3.6.3.2 Generalized scaling equations -- 3.7 Compact Model Application to Experimental Data -- References -- Chapter 4 - (Sub)mm-wave Calibration -- 4.1 Introduction -- 4.2 Multi-mode Propagation and Calibration Transfer at mm-wave -- 4.2.1 Parallel Plate Waveguide Mode -- 4.2.2 Surface Wave Modes: TM0 and TE1 -- 4.2.3 Electrically Thin Substrates -- 4.2.4 Calibration Transfer -- 4.3 Direct On-wafer Calibration -- 4.3.1 Characteristic Impedance Extraction of Transmission Lines -- 4.4 Direct DUT-plane Calibration -- 4.5 Conclusion -- References -- Chapter 5 - Reliability -- 5.1 Mixed-mode Stress Tests -- 5.1.1 Introduction to Hot-Carrier Degradation under MM Stress -- 5.1.2 Long-term MM Stress Characterization on IHP Devices -- 5.1.3 Medium-term MM Stress Characterization on IFX Devices -- 5.2 Long-term Stress Tests -- 5.2.1 Experimental Setup -- 5.2.2 Long-term Degradation Test Results -- 5.2.3 Low-frequency Noise Characterization -- 5.3 Compact Modeling of Hot-Carrier Degradation -- 5.3.1 Empirical Equations by IHP -- 5.3.2 HICUM-based Model -- 5.4 Thermal Effects -- 5.4.1 Experimental RTH Extraction -- 5.4.2 Thermal Simulation -- 5.4.3 Scaling Considerations -- References.
Chapter 6 - Millimeter-wave Circuits and Applications -- 6.1 Millimeter-wave Benchmark Circuits and Building Blocks -- 6.1.1 Benchmark Circuits -- 6.1.2 Circuit Building Blocks -- 6.1.2.1 W-band low-noise amplifier (LNA) with 0.5 V supply voltage -- 6.1.2.2 W-band low-power frequency tripler -- 6.2 Millimeter-wave and Terahertz Systems -- 6.2.1 240 GHz SiGe Chipset -- 6.2.1.1 Wideband LO signal generation -- 6.2.1.2 Transmitter building blocks -- 6.2.1.3 Receiver building blocks -- 6.2.1.4 Antenna design -- 6.2.1.5 Packaging and high-speed PCB design -- 6.2.1.6 Tx and Rx characterization -- 6.2.1.7 Ultra-high data rate wireless communication -- 6.2.2 210-270 GHz Circularly Polarized Radar -- 6.2.3 0.5 THz Computed Tomography -- 6.2.3.1 Components -- 6.2.3.2 Detector design -- 6.2.3.3 THz-CT results -- References -- Chapter 7 - Future of SiGe HBT Technology and Its Applications -- 7.1 Introduction -- 7.2 Technology Comparison -- 7.3 Future Millimeter-wave and THz Applications -- 7.3.1 Communication -- 7.3.2 Radar -- 7.3.3 Imaging and Sensing -- References -- Index -- About the Editors -- Back Cover.
isbn 1-00-333951-4
1-000-79128-9
1-003-33951-4
1-000-79440-7
87-93519-60-5
87-93519-61-3
callnumber-first T - Technology
callnumber-subject TK - Electrical and Nuclear Engineering
callnumber-label TK7871
callnumber-sort TK 47871.96 B55 S555 42018
illustrated Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 621 - Applied physics
dewey-full 621.381528
dewey-sort 3621.381528
dewey-raw 621.381528
dewey-search 621.381528
work_keys_str_mv AT rinaldiniccolo silicongermaniumheterojunctionbipolartransistorsformmwavesystemstechnologymodelingandcircuitapplications
AT schrotermichael silicongermaniumheterojunctionbipolartransistorsformmwavesystemstechnologymodelingandcircuitapplications
status_str n
ids_txt_mv (CKB)4100000004817454
(MiAaPQ)EBC5376760
(MiAaPQ)EBC30251855
(Au-PeEL)EBL30251855
(oapen)https://directory.doabooks.org/handle/20.500.12854/94299
(MiAaPQ)EBC7244913
(Au-PeEL)EBL7244913
(EXLCZ)994100000004817454
carrierType_str_mv cr
hierarchy_parent_title River Publishers series in electronic materials and devices
is_hierarchy_title Silicon-germanium heterojunction bipolar transistors for mm-wave systems : technology, modeling and circuit applications /
container_title River Publishers series in electronic materials and devices
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1803515085452214272
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01894nam a22003853i 4500</leader><controlfield tag="001">993570975804498</controlfield><controlfield tag="005">20231110172225.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">231110s2018 gw ao ob 001 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-00-333951-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-000-79128-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-003-33951-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-000-79440-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">87-93519-60-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4100000004817454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC5376760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC30251855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30251855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/94299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC7244913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL7244913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994100000004817454</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7871.96.B55</subfield><subfield code="b">.S555 2018</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.381528</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Silicon-germanium heterojunction bipolar transistors for mm-wave systems :</subfield><subfield code="b">technology, modeling and circuit applications /</subfield><subfield code="c">editors, Niccolo Rinaldi, Michael Schroter.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Gistrup, Denmark ;</subfield><subfield code="a">Delft, Netherlands :</subfield><subfield code="b">River Publishers,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (378 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">River Publishers series in electronic materials and devices</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="536" ind1=" " ind2=" "><subfield code="a">European Commission</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- Half Title page -- RIVER PUBLISHERS SERIES IN ELECTRONIC MATERIALS AND DEVICES -- Title Page - Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications -- Copyright page -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Introduction -- Motivation and Objectives of the DOTSEVEN Project -- Approach toward Achieving the Ambitious Goals -- Overview of Results and Their Impact -- References -- Chapter 1 - SiGe HBT Technology -- 1.1 Introduction -- 1.2 HBT Performance Factors -- 1.3 HBT Device and Process Architectures Explored in the DOTSEVEN Project -- 1.3.1 Selective Epitaxial Growth of the Base -- 1.3.1.1 DPSA-SEG device architecture -- 1.3.1.2 Approaches to overcome limitations of the DPSA-SEG architecture -- 1.3.2 Non-selective Epitaxial Growth of the Base -- 1.4 Optimization of the Vertical Doping Profile -- 1.5 Optimization towards 700 GHz fMAX -- 1.6 Summary -- References -- Chapter 2 - Device Simulation -- 2.1 Numerical Simulation -- 2.2 Device Simulation -- 2.2.1 TCAD Device Optimization -- 2.2.2 Deterministic BTE Solvers -- 2.2.3 Drift-diffusion and Hydrodynamic Transport Models -- 2.2.4 Simulation Examples -- 2.2.4.1 DD simulation -- 2.2.4.2 HD simulation -- 2.2.4.3 Effects beyond DD and HD transport -- 2.2.4.4 Comparison with experimental data -- 2.3 Advanced Electro-thermal Simulation -- 2.3.1 Carrier-Phonon System in SiGe HBTs -- 2.3.2 Deterministic and Self-consistent Electrothermal Simulation Approach -- 2.3.3 Hot Phonon Effects in a Calibrated System -- 2.3.4 Thermal Resistance Extraction from the Simulated DC Characteristics -- 2.4 Microscopic Simulation of Hot-carrier Degradation -- 2.4.1 Physics of Hot-carrier Degradation -- 2.4.2 Modeling of Hot-carrier Effects.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4.3 Simulation of SiGe HBTs under Stress Conditions Close to the SOA Limit -- References -- Chapter 3 - SiGe HBT Compact Modeling -- 3.1 Introduction -- 3.2 Overview of HICUM Level 2 -- 3.3 Modeling of the Quasi-Static Transfer Current -- 3.3.1 Basics of the GICCR -- 3.3.2 SiGe HBT Extensions -- 3.3.3 Temperature Dependence -- 3.4 Charge Storage -- 3.4.1 Critical Current -- 3.4.2 SiGe Heterojunction Barrier -- 3.5 Intra-Device Substrate Coupling -- 3.6 SiGe HBT Parameter Extraction -- 3.6.1 Extraction of Series Resistances -- 3.6.2 Extraction of the Transfer Current Parameters -- 3.6.3 Physics-Based Parameter Scaling -- 3.6.3.1 Standard geometry scaling equation -- 3.6.3.2 Generalized scaling equations -- 3.7 Compact Model Application to Experimental Data -- References -- Chapter 4 - (Sub)mm-wave Calibration -- 4.1 Introduction -- 4.2 Multi-mode Propagation and Calibration Transfer at mm-wave -- 4.2.1 Parallel Plate Waveguide Mode -- 4.2.2 Surface Wave Modes: TM0 and TE1 -- 4.2.3 Electrically Thin Substrates -- 4.2.4 Calibration Transfer -- 4.3 Direct On-wafer Calibration -- 4.3.1 Characteristic Impedance Extraction of Transmission Lines -- 4.4 Direct DUT-plane Calibration -- 4.5 Conclusion -- References -- Chapter 5 - Reliability -- 5.1 Mixed-mode Stress Tests -- 5.1.1 Introduction to Hot-Carrier Degradation under MM Stress -- 5.1.2 Long-term MM Stress Characterization on IHP Devices -- 5.1.3 Medium-term MM Stress Characterization on IFX Devices -- 5.2 Long-term Stress Tests -- 5.2.1 Experimental Setup -- 5.2.2 Long-term Degradation Test Results -- 5.2.3 Low-frequency Noise Characterization -- 5.3 Compact Modeling of Hot-Carrier Degradation -- 5.3.1 Empirical Equations by IHP -- 5.3.2 HICUM-based Model -- 5.4 Thermal Effects -- 5.4.1 Experimental RTH Extraction -- 5.4.2 Thermal Simulation -- 5.4.3 Scaling Considerations -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 6 - Millimeter-wave Circuits and Applications -- 6.1 Millimeter-wave Benchmark Circuits and Building Blocks -- 6.1.1 Benchmark Circuits -- 6.1.2 Circuit Building Blocks -- 6.1.2.1 W-band low-noise amplifier (LNA) with 0.5 V supply voltage -- 6.1.2.2 W-band low-power frequency tripler -- 6.2 Millimeter-wave and Terahertz Systems -- 6.2.1 240 GHz SiGe Chipset -- 6.2.1.1 Wideband LO signal generation -- 6.2.1.2 Transmitter building blocks -- 6.2.1.3 Receiver building blocks -- 6.2.1.4 Antenna design -- 6.2.1.5 Packaging and high-speed PCB design -- 6.2.1.6 Tx and Rx characterization -- 6.2.1.7 Ultra-high data rate wireless communication -- 6.2.2 210-270 GHz Circularly Polarized Radar -- 6.2.3 0.5 THz Computed Tomography -- 6.2.3.1 Components -- 6.2.3.2 Detector design -- 6.2.3.3 THz-CT results -- References -- Chapter 7 - Future of SiGe HBT Technology and Its Applications -- 7.1 Introduction -- 7.2 Technology Comparison -- 7.3 Future Millimeter-wave and THz Applications -- 7.3.1 Communication -- 7.3.2 Radar -- 7.3.3 Imaging and Sensing -- References -- Index -- About the Editors -- Back Cover.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bipolar transistors.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Silicon alloys.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">87-93519-61-3</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rinaldi, Niccolo,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schroter, Michael,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">River Publishers series in electronic materials and devices.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-07-03 00:37:31 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2018-07-11 07:04:39 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5341442550004498&amp;Force_direct=true</subfield><subfield code="Z">5341442550004498</subfield><subfield code="b">Available</subfield><subfield code="8">5341442550004498</subfield></datafield></record></collection>