Silicon-germanium heterojunction bipolar transistors for mm-wave systems : : technology, modeling and circuit applications / / editors, Niccolo Rinaldi, Michael Schroter.

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer e...

Full description

Saved in:
Bibliographic Details
Superior document:River Publishers series in electronic materials and devices
TeilnehmendeR:
Place / Publishing House:Gistrup, Denmark ;, Delft, Netherlands : : River Publishers,, 2018.
©2018
Year of Publication:2018
Edition:1st ed.
Language:English
Series:River Publishers series in electronic materials and devices.
Physical Description:1 online resource (378 pages).
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 01894nam a22003853i 4500
001 993570975804498
005 20231110172225.0
006 m o d |
007 cr cnu||||||||
008 231110s2018 gw ao ob 001 0 eng d
020 |a 1-00-333951-4 
020 |a 1-000-79128-9 
020 |a 1-003-33951-4 
020 |a 1-000-79440-7 
020 |a 87-93519-60-5 
035 |a (CKB)4100000004817454 
035 |a (MiAaPQ)EBC5376760 
035 |a (MiAaPQ)EBC30251855 
035 |a (Au-PeEL)EBL30251855 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/94299 
035 |a (MiAaPQ)EBC7244913 
035 |a (Au-PeEL)EBL7244913 
035 |a (EXLCZ)994100000004817454 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
041 0 |a eng 
050 4 |a TK7871.96.B55  |b .S555 2018 
082 0 |a 621.381528  |2 23 
245 0 0 |a Silicon-germanium heterojunction bipolar transistors for mm-wave systems :  |b technology, modeling and circuit applications /  |c editors, Niccolo Rinaldi, Michael Schroter. 
250 |a 1st ed. 
264 1 |a Gistrup, Denmark ;  |a Delft, Netherlands :  |b River Publishers,  |c 2018. 
264 4 |c ©2018 
300 |a 1 online resource (378 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a River Publishers series in electronic materials and devices 
520 |a The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems. 
546 |a English 
536 |a European Commission 
588 |a Description based on print version record. 
505 0 |a Front Cover -- Half Title page -- RIVER PUBLISHERS SERIES IN ELECTRONIC MATERIALS AND DEVICES -- Title Page - Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications -- Copyright page -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Introduction -- Motivation and Objectives of the DOTSEVEN Project -- Approach toward Achieving the Ambitious Goals -- Overview of Results and Their Impact -- References -- Chapter 1 - SiGe HBT Technology -- 1.1 Introduction -- 1.2 HBT Performance Factors -- 1.3 HBT Device and Process Architectures Explored in the DOTSEVEN Project -- 1.3.1 Selective Epitaxial Growth of the Base -- 1.3.1.1 DPSA-SEG device architecture -- 1.3.1.2 Approaches to overcome limitations of the DPSA-SEG architecture -- 1.3.2 Non-selective Epitaxial Growth of the Base -- 1.4 Optimization of the Vertical Doping Profile -- 1.5 Optimization towards 700 GHz fMAX -- 1.6 Summary -- References -- Chapter 2 - Device Simulation -- 2.1 Numerical Simulation -- 2.2 Device Simulation -- 2.2.1 TCAD Device Optimization -- 2.2.2 Deterministic BTE Solvers -- 2.2.3 Drift-diffusion and Hydrodynamic Transport Models -- 2.2.4 Simulation Examples -- 2.2.4.1 DD simulation -- 2.2.4.2 HD simulation -- 2.2.4.3 Effects beyond DD and HD transport -- 2.2.4.4 Comparison with experimental data -- 2.3 Advanced Electro-thermal Simulation -- 2.3.1 Carrier-Phonon System in SiGe HBTs -- 2.3.2 Deterministic and Self-consistent Electrothermal Simulation Approach -- 2.3.3 Hot Phonon Effects in a Calibrated System -- 2.3.4 Thermal Resistance Extraction from the Simulated DC Characteristics -- 2.4 Microscopic Simulation of Hot-carrier Degradation -- 2.4.1 Physics of Hot-carrier Degradation -- 2.4.2 Modeling of Hot-carrier Effects. 
505 8 |a 2.4.3 Simulation of SiGe HBTs under Stress Conditions Close to the SOA Limit -- References -- Chapter 3 - SiGe HBT Compact Modeling -- 3.1 Introduction -- 3.2 Overview of HICUM Level 2 -- 3.3 Modeling of the Quasi-Static Transfer Current -- 3.3.1 Basics of the GICCR -- 3.3.2 SiGe HBT Extensions -- 3.3.3 Temperature Dependence -- 3.4 Charge Storage -- 3.4.1 Critical Current -- 3.4.2 SiGe Heterojunction Barrier -- 3.5 Intra-Device Substrate Coupling -- 3.6 SiGe HBT Parameter Extraction -- 3.6.1 Extraction of Series Resistances -- 3.6.2 Extraction of the Transfer Current Parameters -- 3.6.3 Physics-Based Parameter Scaling -- 3.6.3.1 Standard geometry scaling equation -- 3.6.3.2 Generalized scaling equations -- 3.7 Compact Model Application to Experimental Data -- References -- Chapter 4 - (Sub)mm-wave Calibration -- 4.1 Introduction -- 4.2 Multi-mode Propagation and Calibration Transfer at mm-wave -- 4.2.1 Parallel Plate Waveguide Mode -- 4.2.2 Surface Wave Modes: TM0 and TE1 -- 4.2.3 Electrically Thin Substrates -- 4.2.4 Calibration Transfer -- 4.3 Direct On-wafer Calibration -- 4.3.1 Characteristic Impedance Extraction of Transmission Lines -- 4.4 Direct DUT-plane Calibration -- 4.5 Conclusion -- References -- Chapter 5 - Reliability -- 5.1 Mixed-mode Stress Tests -- 5.1.1 Introduction to Hot-Carrier Degradation under MM Stress -- 5.1.2 Long-term MM Stress Characterization on IHP Devices -- 5.1.3 Medium-term MM Stress Characterization on IFX Devices -- 5.2 Long-term Stress Tests -- 5.2.1 Experimental Setup -- 5.2.2 Long-term Degradation Test Results -- 5.2.3 Low-frequency Noise Characterization -- 5.3 Compact Modeling of Hot-Carrier Degradation -- 5.3.1 Empirical Equations by IHP -- 5.3.2 HICUM-based Model -- 5.4 Thermal Effects -- 5.4.1 Experimental RTH Extraction -- 5.4.2 Thermal Simulation -- 5.4.3 Scaling Considerations -- References. 
505 8 |a Chapter 6 - Millimeter-wave Circuits and Applications -- 6.1 Millimeter-wave Benchmark Circuits and Building Blocks -- 6.1.1 Benchmark Circuits -- 6.1.2 Circuit Building Blocks -- 6.1.2.1 W-band low-noise amplifier (LNA) with 0.5 V supply voltage -- 6.1.2.2 W-band low-power frequency tripler -- 6.2 Millimeter-wave and Terahertz Systems -- 6.2.1 240 GHz SiGe Chipset -- 6.2.1.1 Wideband LO signal generation -- 6.2.1.2 Transmitter building blocks -- 6.2.1.3 Receiver building blocks -- 6.2.1.4 Antenna design -- 6.2.1.5 Packaging and high-speed PCB design -- 6.2.1.6 Tx and Rx characterization -- 6.2.1.7 Ultra-high data rate wireless communication -- 6.2.2 210-270 GHz Circularly Polarized Radar -- 6.2.3 0.5 THz Computed Tomography -- 6.2.3.1 Components -- 6.2.3.2 Detector design -- 6.2.3.3 THz-CT results -- References -- Chapter 7 - Future of SiGe HBT Technology and Its Applications -- 7.1 Introduction -- 7.2 Technology Comparison -- 7.3 Future Millimeter-wave and THz Applications -- 7.3.1 Communication -- 7.3.2 Radar -- 7.3.3 Imaging and Sensing -- References -- Index -- About the Editors -- Back Cover. 
504 |a Includes bibliographical references and index. 
650 0 |a Bipolar transistors. 
650 0 |a Silicon alloys. 
776 |z 87-93519-61-3 
700 1 |a Rinaldi, Niccolo,  |e editor. 
700 1 |a Schroter, Michael,  |e editor. 
830 0 |a River Publishers series in electronic materials and devices. 
906 |a BOOK 
ADM |b 2024-07-03 00:37:31 Europe/Vienna  |f system  |c marc21  |a 2018-07-11 07:04:39 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5341442550004498&Force_direct=true  |Z 5341442550004498  |b Available  |8 5341442550004498