SiC based Miniaturized Devices

MEMS devices are found in many of today’s electronic devices and systems, from air-bag sensors in cars to smart phones, embedded systems, etc. Increasingly, the reduction in dimensions has led to nanometer-scale devices, called NEMS. The plethora of applications on the commercial market speaks for i...

Full description

Saved in:
Bibliographic Details
TeilnehmendeR:
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (170 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04682nam-a2201093z--4500
001 993545933304498
005 20231214133209.0
006 m o d
007 cr|mn|---annan
008 202105s2020 xx |||||o ||| 0|eng d
035 |a (CKB)5400000000042844 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/68646 
035 |a (EXLCZ)995400000000042844 
041 0 |a eng 
245 0 0 |a SiC based Miniaturized Devices 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (170 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a MEMS devices are found in many of today’s electronic devices and systems, from air-bag sensors in cars to smart phones, embedded systems, etc. Increasingly, the reduction in dimensions has led to nanometer-scale devices, called NEMS. The plethora of applications on the commercial market speaks for itself, and especially for the highly precise manufacturing of silicon-based MEMS and NEMS. While this is a tremendous achievement, silicon as a material has some drawbacks, mainly in the area of mechanical fatigue and thermal properties. Silicon carbide (SiC), a well-known wide-bandgap semiconductor whose adoption in commercial products is experiening exponential growth, especially in the power electronics arena. While SiC MEMS have been around for decades, in this Special Issue we seek to capture both an overview of the devices that have been demonstrated to date, as well as bring new technologies and progress in the MEMS processing area to the forefront. Thus, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on: (1) novel designs, fabrication, control, and modeling of SiC MEMS and NEMS based on all kinds of actuation mechanisms; and (2) new developments in applying SiC MEMS and NEMS in consumer electronics, optical communications, industry, medicine, agriculture, space, and defense. 
546 |a English 
650 0 |a Engineering  |x History. 
650 0 |a Technology  |2 History. 
653 |a high-power impulse magnetron sputtering (HiPIMS) 
653 |a silicon carbide 
653 |a aluminum nitride 
653 |a thin film 
653 |a Rutherford backscattering spectrometry (RBS) 
653 |a grazing incidence X-ray diffraction (GIXRD) 
653 |a Raman spectroscopy 
653 |a 6H-SiC 
653 |a indentation 
653 |a deformation 
653 |a material removal mechanisms 
653 |a critical load 
653 |a 4H-SiC 
653 |a critical depth of cut 
653 |a Berkovich indenter 
653 |a cleavage strength 
653 |a nanoscratching 
653 |a power electronics 
653 |a high-temperature converters 
653 |a MEMS devices 
653 |a SiC power electronic devices 
653 |a neural interface 
653 |a neural probe 
653 |a neural implant 
653 |a microelectrode array 
653 |a MEA 
653 |a SiC 
653 |a 3C-SiC 
653 |a doped SiC 
653 |a n-type 
653 |a p-type 
653 |a amorphous SiC 
653 |a epitaxial growth 
653 |a electrochemical characterization 
653 |a MESFET 
653 |a simulation 
653 |a PAE 
653 |a bulk micromachining 
653 |a electrochemical etching 
653 |a circular membrane 
653 |a bulge test 
653 |a vibrometry 
653 |a mechanical properties 
653 |a Young's modulus 
653 |a residual stress 
653 |a FEM 
653 |a semiconductor radiation detector 
653 |a microstrip detector 
653 |a power module 
653 |a negative gate-source voltage spike 
653 |a 4H-SiC, epitaxial layer 
653 |a Schottky barrier 
653 |a radiation detector 
653 |a point defects 
653 |a deep level transient spectroscopy (DLTS) 
653 |a thermally stimulated current spectroscopy (TSC) 
653 |a electron beam induced current spectroscopy (EBIC) 
653 |a pulse height spectroscopy (PHS) 
776 |z 3-03936-010-8 
776 |z 3-03936-011-6 
700 1 |a Saddow, Stephen Edward.  |e editor. 
700 1 |a Alquier, Daniel.  |e editor. 
700 1 |a Wang, Jing,  |d 1978 March-  |e editor. 
700 1 |a La Via, Francesco.  |e editor. 
700 1 |a Fraga, Mariana Amorim,  |e editor. 
700 1 |a Saddow, Stephen E.,  |e other 
700 1 |a Alquier, Daniel  |4 oth 
700 1 |a Wang, Jing  |4 oth 
700 1 |a La Via, Francesco  |4 oth 
700 1 |a Fraga, Mariana  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:46:25 Europe/Vienna  |f system  |c marc21  |a 2022-04-04 09:22:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338092550004498&Force_direct=true  |Z 5338092550004498  |b Available  |8 5338092550004498