MEMS Accelerometers

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Acceleromete...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (252 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993543949804498
ctrlnum (CKB)4920000000095132
(oapen)https://directory.doabooks.org/handle/20.500.12854/53145
(EXLCZ)994920000000095132
collection bib_alma
record_format marc
spelling Ngo, Ha Duong auth
MEMS Accelerometers
MDPI - Multidisciplinary Digital Publishing Institute 2019
1 electronic resource (252 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.
English
micromachining
turbulent kinetic energy dissipation rate
microelectromechanical systems (MEMS) piezoresistive sensor chip
WiFi-RSSI radio map
step detection
built-in self-test
regularity of activity
motion analysis
gait analysis
frequency
acceleration
MEMS accelerometer
zero-velocity update
rehabilitation assessment
vacuum microelectronic
dance classification
Kerr noise
MEMS
micro machining
MEMS sensors
stereo visual-inertial odometry
self-coaching
miniaturization
wavelet packet
three-axis acceleration sensor
MEMS-IMU accelerometer
performance characterization
electrostatic stiffness
delaying mechanism
three-axis accelerometer
angular-rate sensing
indoor positioning
whispering-gallery-mode
sensitivity
heat convection
multi-axis sensing
L-shaped beam
stride length estimation
activity monitoring
process optimization
mismatch of parasitic capacitance
electromechanical delta-sigma
cathode tips array
in situ self-testing
high acceleration sensor
deep learning
marine environmental monitoring
accelerometer
fault tolerant
hostile environment
micro-electro-mechanical systems (MEMS)
low-temperature co-fired ceramic (LTCC)
classification of horse gaits
Taguchi method
interface ASIC
capacitive transduction
digital resonator
safety and arming system
inertial sensors
MEMS technology
sleep time duration detection
field emission
probe
piezoresistive effect
capacitive accelerometer
auto-encoder
MEMS-IMU
body sensor network
optical microresonator
wireless
hybrid integrated
mode splitting
3-03897-414-5
Rasras, Mahmoud auth
Elfadel, Ibrahim (Abe) M. auth
language English
format eBook
author Ngo, Ha Duong
spellingShingle Ngo, Ha Duong
MEMS Accelerometers
author_facet Ngo, Ha Duong
Rasras, Mahmoud
Elfadel, Ibrahim (Abe) M.
author_variant h d n hd hdn
author2 Rasras, Mahmoud
Elfadel, Ibrahim (Abe) M.
author2_variant m r mr
i a m e iam iame
author_sort Ngo, Ha Duong
title MEMS Accelerometers
title_full MEMS Accelerometers
title_fullStr MEMS Accelerometers
title_full_unstemmed MEMS Accelerometers
title_auth MEMS Accelerometers
title_new MEMS Accelerometers
title_sort mems accelerometers
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2019
physical 1 electronic resource (252 p.)
isbn 3-03897-415-3
3-03897-414-5
illustrated Not Illustrated
work_keys_str_mv AT ngohaduong memsaccelerometers
AT rasrasmahmoud memsaccelerometers
AT elfadelibrahimabem memsaccelerometers
status_str n
ids_txt_mv (CKB)4920000000095132
(oapen)https://directory.doabooks.org/handle/20.500.12854/53145
(EXLCZ)994920000000095132
carrierType_str_mv cr
is_hierarchy_title MEMS Accelerometers
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1787548735182471168
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04991nam-a2201153z--4500</leader><controlfield tag="001">993543949804498</controlfield><controlfield tag="005">20231214133229.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2019 xx |||||o ||| 0|eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-03897-415-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4920000000095132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/53145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994920000000095132</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ngo, Ha Duong</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MEMS Accelerometers</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (252 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">micromachining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">turbulent kinetic energy dissipation rate</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microelectromechanical systems (MEMS) piezoresistive sensor chip</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">WiFi-RSSI radio map</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">step detection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">built-in self-test</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">regularity of activity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">motion analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">gait analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">frequency</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">acceleration</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS accelerometer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">zero-velocity update</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">rehabilitation assessment</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">vacuum microelectronic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dance classification</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kerr noise</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">micro machining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stereo visual-inertial odometry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">self-coaching</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">miniaturization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wavelet packet</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">three-axis acceleration sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS-IMU accelerometer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">performance characterization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electrostatic stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">delaying mechanism</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">three-axis accelerometer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">angular-rate sensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">indoor positioning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">whispering-gallery-mode</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sensitivity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">heat convection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multi-axis sensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">L-shaped beam</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stride length estimation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">activity monitoring</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">process optimization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mismatch of parasitic capacitance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electromechanical delta-sigma</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cathode tips array</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">in situ self-testing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">high acceleration sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">marine environmental monitoring</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">accelerometer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fault tolerant</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hostile environment</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">micro-electro-mechanical systems (MEMS)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">low-temperature co-fired ceramic (LTCC)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">classification of horse gaits</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Taguchi method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">interface ASIC</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">capacitive transduction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">digital resonator</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">safety and arming system</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">inertial sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sleep time duration detection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">field emission</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">probe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">piezoresistive effect</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">capacitive accelerometer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">auto-encoder</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEMS-IMU</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">body sensor network</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">optical microresonator</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wireless</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hybrid integrated</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mode splitting</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03897-414-5</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rasras, Mahmoud</subfield><subfield code="4">auth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elfadel, Ibrahim (Abe) M.</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:47:15 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2019-11-10 04:18:40 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337497480004498&amp;Force_direct=true</subfield><subfield code="Z">5337497480004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337497480004498</subfield></datafield></record></collection>