MEMS Accelerometers

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Acceleromete...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (252 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04991nam-a2201153z--4500
001 993543949804498
005 20231214133229.0
006 m o d
007 cr|mn|---annan
008 202102s2019 xx |||||o ||| 0|eng d
020 |a 3-03897-415-3 
035 |a (CKB)4920000000095132 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/53145 
035 |a (EXLCZ)994920000000095132 
041 0 |a eng 
100 1 |a Ngo, Ha Duong  |4 auth 
245 1 0 |a MEMS Accelerometers 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (252 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. 
546 |a English 
653 |a micromachining 
653 |a turbulent kinetic energy dissipation rate 
653 |a microelectromechanical systems (MEMS) piezoresistive sensor chip 
653 |a WiFi-RSSI radio map 
653 |a step detection 
653 |a built-in self-test 
653 |a regularity of activity 
653 |a motion analysis 
653 |a gait analysis 
653 |a frequency 
653 |a acceleration 
653 |a MEMS accelerometer 
653 |a zero-velocity update 
653 |a rehabilitation assessment 
653 |a vacuum microelectronic 
653 |a dance classification 
653 |a Kerr noise 
653 |a MEMS 
653 |a micro machining 
653 |a MEMS sensors 
653 |a stereo visual-inertial odometry 
653 |a self-coaching 
653 |a miniaturization 
653 |a wavelet packet 
653 |a three-axis acceleration sensor 
653 |a MEMS-IMU accelerometer 
653 |a performance characterization 
653 |a electrostatic stiffness 
653 |a delaying mechanism 
653 |a three-axis accelerometer 
653 |a angular-rate sensing 
653 |a indoor positioning 
653 |a whispering-gallery-mode 
653 |a sensitivity 
653 |a heat convection 
653 |a multi-axis sensing 
653 |a L-shaped beam 
653 |a stride length estimation 
653 |a activity monitoring 
653 |a process optimization 
653 |a mismatch of parasitic capacitance 
653 |a electromechanical delta-sigma 
653 |a cathode tips array 
653 |a in situ self-testing 
653 |a high acceleration sensor 
653 |a deep learning 
653 |a marine environmental monitoring 
653 |a accelerometer 
653 |a fault tolerant 
653 |a hostile environment 
653 |a micro-electro-mechanical systems (MEMS) 
653 |a low-temperature co-fired ceramic (LTCC) 
653 |a classification of horse gaits 
653 |a Taguchi method 
653 |a interface ASIC 
653 |a capacitive transduction 
653 |a digital resonator 
653 |a safety and arming system 
653 |a inertial sensors 
653 |a MEMS technology 
653 |a sleep time duration detection 
653 |a field emission 
653 |a probe 
653 |a piezoresistive effect 
653 |a capacitive accelerometer 
653 |a auto-encoder 
653 |a MEMS-IMU 
653 |a body sensor network 
653 |a optical microresonator 
653 |a wireless 
653 |a hybrid integrated 
653 |a mode splitting 
776 |z 3-03897-414-5 
700 1 |a Rasras, Mahmoud  |4 auth 
700 1 |a Elfadel, Ibrahim (Abe) M.  |4 auth 
906 |a BOOK 
ADM |b 2023-12-15 05:47:15 Europe/Vienna  |f system  |c marc21  |a 2019-11-10 04:18:40 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5337497480004498&Force_direct=true  |Z 5337497480004498  |b Available  |8 5337497480004498