Nonlinear Design : : FETs and HEMTs.

Saved in:
Bibliographic Details
:
Place / Publishing House:Norwood : : Artech House,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (373 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006877367
ctrlnum (MiAaPQ)5006877367
(Au-PeEL)EBL6877367
(OCoLC)1296425002
collection bib_alma
record_format marc
spelling Ladbrooke, Peter H.
Nonlinear Design : FETs and HEMTs.
1st ed.
Norwood : Artech House, 2021.
©2021.
1 online resource (373 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Nonlinear Design: FETs and HEMTs -- Contents -- Preface -- Acknowledgments -- Introduction -- Part I -- Chapter 1 Introduction -- 1.1 The Statement of the Problem -- 1.2 Verifying the Approach in MMIC Design: GaAs FETs and HEMTs -- 1.3 Aims of the Present Work -- 1.3.1 Motivation and Practical Application -- 1.3.2 The Physics-to-CircuitModel Construct -- 1.3.3 Applicability -- 1.4 Preview of Results -- 1.5 Organization of the Book -- 1.6 A Note on Figures -- References -- Chapter 2 Summary of Approaches and Needs -- 2.1 Why Models Are Important -- 2.2 Types of Nonlinear Models -- 2.3 Desirable Attributes -- 2.4 Behavioral or Black Box Characterization -- 2.5 Properties of Large-SignalModels in More Detail -- 2.5.1 List of Properties -- 2.5.2 The Subthreshold Region -- 2.5.3 Consequences of Fitting Well to Some Features of iD (vGS,vDS) butNot Others -- 2.5.4 Thermal Considerations -- 2.5.5 Construction of the Model from Measurements -- 2.5.6 The Position of Commercial Extractors -- 2.5.7 FET Size Considerations -- 2.5.8 Model Openness in Construction and Usability -- 2.5.9 Constraints Placed upon Models by Circuit Simulators -- 2.6 Rauscher and Willing -- 2.7 The Curtice Quadratic Model -- 2.7.1 Expression Used for the Modeling Current -- 2.7.2 Expression Used for the Modeling Capacitance -- 2.7.3 Basis -- 2.7.4 Underlying Soundness -- 2.7.5 Measurements Required -- 2.7.6 Openness of Procedure for Extracting the Model from Measurements -- 2.7.7 Scalability -- 2.7.8 General Comments -- 2.8 The Curtice-EttenbergModel -- 2.8.1 Expressions Used for Modeling Current -- 2.8.2 Expressions Used for Modeling Capacitance -- 2.8.3 Basis -- 2.8.4 Underlying Soundness -- 2.8.5 Measurements Required -- 2.8.6 Openness of Procedure for Extracting the Model from Measurements -- 2.8.7 Scalability -- 2.9 The Materka-KacprzakModel.
2.9.1 Expressions Used for Modeling Current -- 2.9.2 Expressions Used for Modeling Capacitance -- 2.9.3 Basis -- 2.9.4 Underlying Soundness -- 2.9.5 Measurements Required -- 2.9.6 Openness of Procedure for Extracting the Model from Measurements -- 2.9.7 Scalability -- 2.10 An Illustrated Application -- 2.10.1 Current Equation: Modified Materka -- 2.10.2 Capacitance Equations: Use of the Statz Expressions -- 2.10.3 Results -- 2.11 The Statz Model -- 2.11.1 Expressions Used for Modeling Current -- 2.11.2 Expressions Used for Modeling Capacitance -- 2.11.3 Basis -- 2.11.4 Underlying Soundness -- 2.11.5 Measurements Required -- 2.11.6 Openness of Procedure for Extracting the Model from Measurements -- 2.11.7 Scalability -- 2.12 TriQuint Own Model (TOM) -- 2.12.1 Expressions Used for Modeling Current -- 2.12.2 Expressions Used for Modeling Capacitance -- 2.12.3 Basis -- 2.12.4 Underlying Soundness -- 2.12.5 Measurements Required -- 2.12.6 Openness of Procedure for Extracting the Model from Measurements -- 2.12.7 Scalability -- 2.13 The EEFET3 Model -- 2.13.1 Basis -- 2.13.2 Underlying Soundness -- 2.13.3 Openness of Procedure for Extracting the Model from Measurements -- 2.14 Other Models Using the Commonplace Equivalent Circuit -- 2.14.1 Dortu-MullerMethod -- 2.14.2 Rodrigues-Tellez -- 2.14.3 Tajima -- 2.14.4 University of Cantabria Model -- 2.14.5 University College Dublin Model -- 2.15 The Parker-SkellernModel -- 2.15.1 Shortcomings in Previous Practice -- 2.15.2 Parker's Scheme: Nested Transformations -- 2.15.3 Expressions Used for Modeling Capacitance -- 2.15.4 Basis and Underlying Soundness -- 2.15.5 Measurements Required -- 2.15.6 Openness of Procedure for Extracting the Model from Measurements -- 2.15.7 Scalability -- 2.15.8 General Comments -- 2.16 The Root Model -- 2.16.1 Basis -- 2.16.2 Underlying Soundness -- 2.16.3 Measurements Required.
2.16.4 Thermal Effects -- 2.16.5 Openness of Procedure for Extracting the Model from Measurements -- 2.16.6 General Comments -- 2.17 The Angelov Model -- 2.17.1 Expression Used for Modeling Current -- 2.17.2 Expression Used for Modeling Capacitance -- 2.17.3 Basis -- 2.17.4 Underlying Soundness -- 2.17.5 Measurements Required -- 2.17.6 Openness of Procedure for Extracting the Model from Measurements -- 2.17.7 Scalability -- 2.17.8 General Comments -- 2.18 Conclusion -- References -- Chapter 3 Practical Behavior of FETs -- 3.1 dc I(V), Dynamic I(V), and RF Properties -- 3.1.1 Example Differences Between dc I(V) and Dynamic i(v -- 3.1.2 Breakdown Different at RF from dc -- 3.1.3 Memory Effects: Surface States, Deep Levels, and Self-Heating -- 3.1.4 S-Parameters:dc Bias and Pulsed Bias -- 3.1.5 Device-to-DeviceVariations -- 3.2 Bias Dependence of the Elements -- 3.2.1 Common Practice: The Beginning with Rauscher and Willing -- 3.2.2 Fitting to S-Parameters:Examples -- 3.2.3 The Commonplace Model -- 3.2.4 Bias Dependence of the Elements: Examples -- 3.3 τ: A Vital But Overlooked Physical Variable -- References -- Chapter 4 The Standard Model:Deriving the Elements -- 4.1 Element Functions Obtained by Fitting: True or Askew? -- 4.2 Neglect of Nonlinear Terms -- 4.2.1 The Problem of Nonlinear Extraction -- 4.2.2 Extracted Versus True Nonlinear Element Functions -- 4.2.3 Consequences for Nonlinear Circuit Simulation -- 4.3 Difficult Cases: Early SiC FET Example -- 4.4 Improvements Towards a True Nonlinear Model -- References -- Chapter 5 The Capacitance Puzzlein the Standard Model -- 5.1 The Form of Cgd and Cds: Fact or Artefact? -- 5.2 The Composition of Cgc -- 5.3 C from g: Deriving Capacitance from Conductance -- 5.4 Standard Model Capacitance in Review -- References -- Chapter 6 Dynamic I(V) Measurements.
6.1 Development of a Desktop Pulsed I(V) Instrument -- 6.2 Operation and Utilization -- 6.3 Memory and Other Effects -- 6.4 Contrariness as a Positive -- 6.5 Contemporary Instrumentation -- References -- Part II -- Chapter 7 Reformulating the Circuit Model -- 7.1 Introduction -- 7.2 The Core -- 7.3 Charge Flows When VGS Changes -- 7.4 Charge Flows When VDG Changes -- 7.5 Resistive and Ancillary Elements -- 7.6 Voltage Dependence of the Elements -- 7.7 Reduction in the Static State to the Standard Model -- 7.8 Previously Published Versions -- References -- Chapter 8 The Importance and Utility of τ -- 8.1 Nature and Origin -- 8.2 Pivotal Role in the Reformed Model -- 8.3 Inclusion in Circuit Simulators -- 8.4 X(τ) as a Staple of Device Operation -- 8.5 A Repository of Information on Device Technology -- References -- Chapter 9 Extraction -- 9.1 Introduction -- 9.2 Obtaining the Element Functions -- 9.2.1 Obtaining the Standard Model Element Functions: The Fitter -- 9.2.2 Fitting the New Topology Model -- 9.3 Curve Fitting -- Reference -- Chapter 10 Obtaining the Currentand Capacitance Functions -- 10.1 Current Functions from Pulsed I(V) Measurements -- 10.2 Dynamic I(V) Reconstructor -- 10.3 Implications for Slow-RateTransients -- 10.4 Obtaining the Capacitance Functions -- 10.5 Charge Conservation -- 10.6 The Defining Case of VDS = 0V -- 10.7 Practical Example of Reformed Model Elements -- References -- Chapter 11 Practical Results -- 11.1 Introduction -- 11.2 First Test: Power Compression and Harmonic Generation -- 11.3 A 38 GHz Frequency Doubler -- 11.4 Two-Stageand Three-Stage500 mWMMIC -- 11.5 Harmonic Load Pull -- 11.6 Memory Effect: Basic Illustration -- References -- Chapter 12 Circuit Simulators -- 12.1 Introduction -- 12.2 Implementation in a Harmonic Balance Simulator -- 12.2.1 Particularizing the Model -- 12.2.2 Accommodating τ.
12.2.3 Run Time and Convergence -- 12.3 Experience with a Time-DomainSimulator -- 12.4 Simulation Prospects -- References -- Part III -- Chapter 13 Fundamentals of FET Operation -- 13.1 Introduction -- 13.2 Electron Depletion and Transport -- 13.3 The Space-ChargeLayer Extension X -- 13.4 The Flat d Approximation -- 13.5 The Uniform EyX Termination Approximation -- 13.6 Expressions for VGC and VD′G -- 13.7 The d-LiftPrinciple -- 13.8 The Delay τgm -- References -- Chapter 14 Current and Charge Conservation -- 14.1 Channel Current -- 14.2 Transreactance Current -- 14.3 Charge Conservation -- 14.4 Charge Storage by Pure Delay τ -- 14.5 Resistances RS and RI -- References -- Chapter 15 Charge Storage -- 15.1 Revisiting Capacitance -- 15.2 When VGS Changes -- 15.2.1 The Overall Picture -- 15.2.2 Branch Capacitance -- 15.2.3 Transcapacitance -- 15.2.4 Branch Charge Storage by Pure Delay -- 15.3 When VDS Changes -- 15.3.1 The Overall Picture -- 15.3.2 Branch Capacitance -- 15.3.3 Transcapacitance -- 15.3.4 Orthogonal Branch Charge Storage by Pure Delay -- 15.4 One Last Visit -- 15.4.1 Reconciliation of the Main Capacitances -- 15.4.2 Wherefore Cds? -- 15.4.3 The True Nature of the Standard Model -- 15.5 Enter the Transit Time -- References -- Chapter 16 Macro-CellSimulators -- 16.1 Introduction -- 16.2 Simulator Requirements -- 16.3 Macro-CellSolvers -- 16.3.1 The Macro-CellIdea -- 16.3.2 Construction -- 16.3.3 Choosing the Cells -- 16.3.4 Below-the-KneeRealism -- 16.3.5 Deconfinement of Hot Electrons -- 16.4 The PHEMT Macro-CellSolver -- 16.5 Applications and Limitations -- References -- Conclusion -- Acronyms and Abbreviations -- List of Symbols -- About the Author -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Field-effect transistors--Design and construction.
Modulation-doped field-effect transistors--Design and construction.
Electronic books.
Print version: Ladbrooke, Peter H. Nonlinear Design Norwood : Artech House,c2021 9781630818685
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6877367 Click to View
language English
format eBook
author Ladbrooke, Peter H.
spellingShingle Ladbrooke, Peter H.
Nonlinear Design : FETs and HEMTs.
Nonlinear Design: FETs and HEMTs -- Contents -- Preface -- Acknowledgments -- Introduction -- Part I -- Chapter 1 Introduction -- 1.1 The Statement of the Problem -- 1.2 Verifying the Approach in MMIC Design: GaAs FETs and HEMTs -- 1.3 Aims of the Present Work -- 1.3.1 Motivation and Practical Application -- 1.3.2 The Physics-to-CircuitModel Construct -- 1.3.3 Applicability -- 1.4 Preview of Results -- 1.5 Organization of the Book -- 1.6 A Note on Figures -- References -- Chapter 2 Summary of Approaches and Needs -- 2.1 Why Models Are Important -- 2.2 Types of Nonlinear Models -- 2.3 Desirable Attributes -- 2.4 Behavioral or Black Box Characterization -- 2.5 Properties of Large-SignalModels in More Detail -- 2.5.1 List of Properties -- 2.5.2 The Subthreshold Region -- 2.5.3 Consequences of Fitting Well to Some Features of iD (vGS,vDS) butNot Others -- 2.5.4 Thermal Considerations -- 2.5.5 Construction of the Model from Measurements -- 2.5.6 The Position of Commercial Extractors -- 2.5.7 FET Size Considerations -- 2.5.8 Model Openness in Construction and Usability -- 2.5.9 Constraints Placed upon Models by Circuit Simulators -- 2.6 Rauscher and Willing -- 2.7 The Curtice Quadratic Model -- 2.7.1 Expression Used for the Modeling Current -- 2.7.2 Expression Used for the Modeling Capacitance -- 2.7.3 Basis -- 2.7.4 Underlying Soundness -- 2.7.5 Measurements Required -- 2.7.6 Openness of Procedure for Extracting the Model from Measurements -- 2.7.7 Scalability -- 2.7.8 General Comments -- 2.8 The Curtice-EttenbergModel -- 2.8.1 Expressions Used for Modeling Current -- 2.8.2 Expressions Used for Modeling Capacitance -- 2.8.3 Basis -- 2.8.4 Underlying Soundness -- 2.8.5 Measurements Required -- 2.8.6 Openness of Procedure for Extracting the Model from Measurements -- 2.8.7 Scalability -- 2.9 The Materka-KacprzakModel.
2.9.1 Expressions Used for Modeling Current -- 2.9.2 Expressions Used for Modeling Capacitance -- 2.9.3 Basis -- 2.9.4 Underlying Soundness -- 2.9.5 Measurements Required -- 2.9.6 Openness of Procedure for Extracting the Model from Measurements -- 2.9.7 Scalability -- 2.10 An Illustrated Application -- 2.10.1 Current Equation: Modified Materka -- 2.10.2 Capacitance Equations: Use of the Statz Expressions -- 2.10.3 Results -- 2.11 The Statz Model -- 2.11.1 Expressions Used for Modeling Current -- 2.11.2 Expressions Used for Modeling Capacitance -- 2.11.3 Basis -- 2.11.4 Underlying Soundness -- 2.11.5 Measurements Required -- 2.11.6 Openness of Procedure for Extracting the Model from Measurements -- 2.11.7 Scalability -- 2.12 TriQuint Own Model (TOM) -- 2.12.1 Expressions Used for Modeling Current -- 2.12.2 Expressions Used for Modeling Capacitance -- 2.12.3 Basis -- 2.12.4 Underlying Soundness -- 2.12.5 Measurements Required -- 2.12.6 Openness of Procedure for Extracting the Model from Measurements -- 2.12.7 Scalability -- 2.13 The EEFET3 Model -- 2.13.1 Basis -- 2.13.2 Underlying Soundness -- 2.13.3 Openness of Procedure for Extracting the Model from Measurements -- 2.14 Other Models Using the Commonplace Equivalent Circuit -- 2.14.1 Dortu-MullerMethod -- 2.14.2 Rodrigues-Tellez -- 2.14.3 Tajima -- 2.14.4 University of Cantabria Model -- 2.14.5 University College Dublin Model -- 2.15 The Parker-SkellernModel -- 2.15.1 Shortcomings in Previous Practice -- 2.15.2 Parker's Scheme: Nested Transformations -- 2.15.3 Expressions Used for Modeling Capacitance -- 2.15.4 Basis and Underlying Soundness -- 2.15.5 Measurements Required -- 2.15.6 Openness of Procedure for Extracting the Model from Measurements -- 2.15.7 Scalability -- 2.15.8 General Comments -- 2.16 The Root Model -- 2.16.1 Basis -- 2.16.2 Underlying Soundness -- 2.16.3 Measurements Required.
2.16.4 Thermal Effects -- 2.16.5 Openness of Procedure for Extracting the Model from Measurements -- 2.16.6 General Comments -- 2.17 The Angelov Model -- 2.17.1 Expression Used for Modeling Current -- 2.17.2 Expression Used for Modeling Capacitance -- 2.17.3 Basis -- 2.17.4 Underlying Soundness -- 2.17.5 Measurements Required -- 2.17.6 Openness of Procedure for Extracting the Model from Measurements -- 2.17.7 Scalability -- 2.17.8 General Comments -- 2.18 Conclusion -- References -- Chapter 3 Practical Behavior of FETs -- 3.1 dc I(V), Dynamic I(V), and RF Properties -- 3.1.1 Example Differences Between dc I(V) and Dynamic i(v -- 3.1.2 Breakdown Different at RF from dc -- 3.1.3 Memory Effects: Surface States, Deep Levels, and Self-Heating -- 3.1.4 S-Parameters:dc Bias and Pulsed Bias -- 3.1.5 Device-to-DeviceVariations -- 3.2 Bias Dependence of the Elements -- 3.2.1 Common Practice: The Beginning with Rauscher and Willing -- 3.2.2 Fitting to S-Parameters:Examples -- 3.2.3 The Commonplace Model -- 3.2.4 Bias Dependence of the Elements: Examples -- 3.3 τ: A Vital But Overlooked Physical Variable -- References -- Chapter 4 The Standard Model:Deriving the Elements -- 4.1 Element Functions Obtained by Fitting: True or Askew? -- 4.2 Neglect of Nonlinear Terms -- 4.2.1 The Problem of Nonlinear Extraction -- 4.2.2 Extracted Versus True Nonlinear Element Functions -- 4.2.3 Consequences for Nonlinear Circuit Simulation -- 4.3 Difficult Cases: Early SiC FET Example -- 4.4 Improvements Towards a True Nonlinear Model -- References -- Chapter 5 The Capacitance Puzzlein the Standard Model -- 5.1 The Form of Cgd and Cds: Fact or Artefact? -- 5.2 The Composition of Cgc -- 5.3 C from g: Deriving Capacitance from Conductance -- 5.4 Standard Model Capacitance in Review -- References -- Chapter 6 Dynamic I(V) Measurements.
6.1 Development of a Desktop Pulsed I(V) Instrument -- 6.2 Operation and Utilization -- 6.3 Memory and Other Effects -- 6.4 Contrariness as a Positive -- 6.5 Contemporary Instrumentation -- References -- Part II -- Chapter 7 Reformulating the Circuit Model -- 7.1 Introduction -- 7.2 The Core -- 7.3 Charge Flows When VGS Changes -- 7.4 Charge Flows When VDG Changes -- 7.5 Resistive and Ancillary Elements -- 7.6 Voltage Dependence of the Elements -- 7.7 Reduction in the Static State to the Standard Model -- 7.8 Previously Published Versions -- References -- Chapter 8 The Importance and Utility of τ -- 8.1 Nature and Origin -- 8.2 Pivotal Role in the Reformed Model -- 8.3 Inclusion in Circuit Simulators -- 8.4 X(τ) as a Staple of Device Operation -- 8.5 A Repository of Information on Device Technology -- References -- Chapter 9 Extraction -- 9.1 Introduction -- 9.2 Obtaining the Element Functions -- 9.2.1 Obtaining the Standard Model Element Functions: The Fitter -- 9.2.2 Fitting the New Topology Model -- 9.3 Curve Fitting -- Reference -- Chapter 10 Obtaining the Currentand Capacitance Functions -- 10.1 Current Functions from Pulsed I(V) Measurements -- 10.2 Dynamic I(V) Reconstructor -- 10.3 Implications for Slow-RateTransients -- 10.4 Obtaining the Capacitance Functions -- 10.5 Charge Conservation -- 10.6 The Defining Case of VDS = 0V -- 10.7 Practical Example of Reformed Model Elements -- References -- Chapter 11 Practical Results -- 11.1 Introduction -- 11.2 First Test: Power Compression and Harmonic Generation -- 11.3 A 38 GHz Frequency Doubler -- 11.4 Two-Stageand Three-Stage500 mWMMIC -- 11.5 Harmonic Load Pull -- 11.6 Memory Effect: Basic Illustration -- References -- Chapter 12 Circuit Simulators -- 12.1 Introduction -- 12.2 Implementation in a Harmonic Balance Simulator -- 12.2.1 Particularizing the Model -- 12.2.2 Accommodating τ.
12.2.3 Run Time and Convergence -- 12.3 Experience with a Time-DomainSimulator -- 12.4 Simulation Prospects -- References -- Part III -- Chapter 13 Fundamentals of FET Operation -- 13.1 Introduction -- 13.2 Electron Depletion and Transport -- 13.3 The Space-ChargeLayer Extension X -- 13.4 The Flat d Approximation -- 13.5 The Uniform EyX Termination Approximation -- 13.6 Expressions for VGC and VD′G -- 13.7 The d-LiftPrinciple -- 13.8 The Delay τgm -- References -- Chapter 14 Current and Charge Conservation -- 14.1 Channel Current -- 14.2 Transreactance Current -- 14.3 Charge Conservation -- 14.4 Charge Storage by Pure Delay τ -- 14.5 Resistances RS and RI -- References -- Chapter 15 Charge Storage -- 15.1 Revisiting Capacitance -- 15.2 When VGS Changes -- 15.2.1 The Overall Picture -- 15.2.2 Branch Capacitance -- 15.2.3 Transcapacitance -- 15.2.4 Branch Charge Storage by Pure Delay -- 15.3 When VDS Changes -- 15.3.1 The Overall Picture -- 15.3.2 Branch Capacitance -- 15.3.3 Transcapacitance -- 15.3.4 Orthogonal Branch Charge Storage by Pure Delay -- 15.4 One Last Visit -- 15.4.1 Reconciliation of the Main Capacitances -- 15.4.2 Wherefore Cds? -- 15.4.3 The True Nature of the Standard Model -- 15.5 Enter the Transit Time -- References -- Chapter 16 Macro-CellSimulators -- 16.1 Introduction -- 16.2 Simulator Requirements -- 16.3 Macro-CellSolvers -- 16.3.1 The Macro-CellIdea -- 16.3.2 Construction -- 16.3.3 Choosing the Cells -- 16.3.4 Below-the-KneeRealism -- 16.3.5 Deconfinement of Hot Electrons -- 16.4 The PHEMT Macro-CellSolver -- 16.5 Applications and Limitations -- References -- Conclusion -- Acronyms and Abbreviations -- List of Symbols -- About the Author -- Index.
author_facet Ladbrooke, Peter H.
author_variant p h l ph phl
author_sort Ladbrooke, Peter H.
title Nonlinear Design : FETs and HEMTs.
title_sub FETs and HEMTs.
title_full Nonlinear Design : FETs and HEMTs.
title_fullStr Nonlinear Design : FETs and HEMTs.
title_full_unstemmed Nonlinear Design : FETs and HEMTs.
title_auth Nonlinear Design : FETs and HEMTs.
title_new Nonlinear Design :
title_sort nonlinear design : fets and hemts.
publisher Artech House,
publishDate 2021
physical 1 online resource (373 pages)
edition 1st ed.
contents Nonlinear Design: FETs and HEMTs -- Contents -- Preface -- Acknowledgments -- Introduction -- Part I -- Chapter 1 Introduction -- 1.1 The Statement of the Problem -- 1.2 Verifying the Approach in MMIC Design: GaAs FETs and HEMTs -- 1.3 Aims of the Present Work -- 1.3.1 Motivation and Practical Application -- 1.3.2 The Physics-to-CircuitModel Construct -- 1.3.3 Applicability -- 1.4 Preview of Results -- 1.5 Organization of the Book -- 1.6 A Note on Figures -- References -- Chapter 2 Summary of Approaches and Needs -- 2.1 Why Models Are Important -- 2.2 Types of Nonlinear Models -- 2.3 Desirable Attributes -- 2.4 Behavioral or Black Box Characterization -- 2.5 Properties of Large-SignalModels in More Detail -- 2.5.1 List of Properties -- 2.5.2 The Subthreshold Region -- 2.5.3 Consequences of Fitting Well to Some Features of iD (vGS,vDS) butNot Others -- 2.5.4 Thermal Considerations -- 2.5.5 Construction of the Model from Measurements -- 2.5.6 The Position of Commercial Extractors -- 2.5.7 FET Size Considerations -- 2.5.8 Model Openness in Construction and Usability -- 2.5.9 Constraints Placed upon Models by Circuit Simulators -- 2.6 Rauscher and Willing -- 2.7 The Curtice Quadratic Model -- 2.7.1 Expression Used for the Modeling Current -- 2.7.2 Expression Used for the Modeling Capacitance -- 2.7.3 Basis -- 2.7.4 Underlying Soundness -- 2.7.5 Measurements Required -- 2.7.6 Openness of Procedure for Extracting the Model from Measurements -- 2.7.7 Scalability -- 2.7.8 General Comments -- 2.8 The Curtice-EttenbergModel -- 2.8.1 Expressions Used for Modeling Current -- 2.8.2 Expressions Used for Modeling Capacitance -- 2.8.3 Basis -- 2.8.4 Underlying Soundness -- 2.8.5 Measurements Required -- 2.8.6 Openness of Procedure for Extracting the Model from Measurements -- 2.8.7 Scalability -- 2.9 The Materka-KacprzakModel.
2.9.1 Expressions Used for Modeling Current -- 2.9.2 Expressions Used for Modeling Capacitance -- 2.9.3 Basis -- 2.9.4 Underlying Soundness -- 2.9.5 Measurements Required -- 2.9.6 Openness of Procedure for Extracting the Model from Measurements -- 2.9.7 Scalability -- 2.10 An Illustrated Application -- 2.10.1 Current Equation: Modified Materka -- 2.10.2 Capacitance Equations: Use of the Statz Expressions -- 2.10.3 Results -- 2.11 The Statz Model -- 2.11.1 Expressions Used for Modeling Current -- 2.11.2 Expressions Used for Modeling Capacitance -- 2.11.3 Basis -- 2.11.4 Underlying Soundness -- 2.11.5 Measurements Required -- 2.11.6 Openness of Procedure for Extracting the Model from Measurements -- 2.11.7 Scalability -- 2.12 TriQuint Own Model (TOM) -- 2.12.1 Expressions Used for Modeling Current -- 2.12.2 Expressions Used for Modeling Capacitance -- 2.12.3 Basis -- 2.12.4 Underlying Soundness -- 2.12.5 Measurements Required -- 2.12.6 Openness of Procedure for Extracting the Model from Measurements -- 2.12.7 Scalability -- 2.13 The EEFET3 Model -- 2.13.1 Basis -- 2.13.2 Underlying Soundness -- 2.13.3 Openness of Procedure for Extracting the Model from Measurements -- 2.14 Other Models Using the Commonplace Equivalent Circuit -- 2.14.1 Dortu-MullerMethod -- 2.14.2 Rodrigues-Tellez -- 2.14.3 Tajima -- 2.14.4 University of Cantabria Model -- 2.14.5 University College Dublin Model -- 2.15 The Parker-SkellernModel -- 2.15.1 Shortcomings in Previous Practice -- 2.15.2 Parker's Scheme: Nested Transformations -- 2.15.3 Expressions Used for Modeling Capacitance -- 2.15.4 Basis and Underlying Soundness -- 2.15.5 Measurements Required -- 2.15.6 Openness of Procedure for Extracting the Model from Measurements -- 2.15.7 Scalability -- 2.15.8 General Comments -- 2.16 The Root Model -- 2.16.1 Basis -- 2.16.2 Underlying Soundness -- 2.16.3 Measurements Required.
2.16.4 Thermal Effects -- 2.16.5 Openness of Procedure for Extracting the Model from Measurements -- 2.16.6 General Comments -- 2.17 The Angelov Model -- 2.17.1 Expression Used for Modeling Current -- 2.17.2 Expression Used for Modeling Capacitance -- 2.17.3 Basis -- 2.17.4 Underlying Soundness -- 2.17.5 Measurements Required -- 2.17.6 Openness of Procedure for Extracting the Model from Measurements -- 2.17.7 Scalability -- 2.17.8 General Comments -- 2.18 Conclusion -- References -- Chapter 3 Practical Behavior of FETs -- 3.1 dc I(V), Dynamic I(V), and RF Properties -- 3.1.1 Example Differences Between dc I(V) and Dynamic i(v -- 3.1.2 Breakdown Different at RF from dc -- 3.1.3 Memory Effects: Surface States, Deep Levels, and Self-Heating -- 3.1.4 S-Parameters:dc Bias and Pulsed Bias -- 3.1.5 Device-to-DeviceVariations -- 3.2 Bias Dependence of the Elements -- 3.2.1 Common Practice: The Beginning with Rauscher and Willing -- 3.2.2 Fitting to S-Parameters:Examples -- 3.2.3 The Commonplace Model -- 3.2.4 Bias Dependence of the Elements: Examples -- 3.3 τ: A Vital But Overlooked Physical Variable -- References -- Chapter 4 The Standard Model:Deriving the Elements -- 4.1 Element Functions Obtained by Fitting: True or Askew? -- 4.2 Neglect of Nonlinear Terms -- 4.2.1 The Problem of Nonlinear Extraction -- 4.2.2 Extracted Versus True Nonlinear Element Functions -- 4.2.3 Consequences for Nonlinear Circuit Simulation -- 4.3 Difficult Cases: Early SiC FET Example -- 4.4 Improvements Towards a True Nonlinear Model -- References -- Chapter 5 The Capacitance Puzzlein the Standard Model -- 5.1 The Form of Cgd and Cds: Fact or Artefact? -- 5.2 The Composition of Cgc -- 5.3 C from g: Deriving Capacitance from Conductance -- 5.4 Standard Model Capacitance in Review -- References -- Chapter 6 Dynamic I(V) Measurements.
6.1 Development of a Desktop Pulsed I(V) Instrument -- 6.2 Operation and Utilization -- 6.3 Memory and Other Effects -- 6.4 Contrariness as a Positive -- 6.5 Contemporary Instrumentation -- References -- Part II -- Chapter 7 Reformulating the Circuit Model -- 7.1 Introduction -- 7.2 The Core -- 7.3 Charge Flows When VGS Changes -- 7.4 Charge Flows When VDG Changes -- 7.5 Resistive and Ancillary Elements -- 7.6 Voltage Dependence of the Elements -- 7.7 Reduction in the Static State to the Standard Model -- 7.8 Previously Published Versions -- References -- Chapter 8 The Importance and Utility of τ -- 8.1 Nature and Origin -- 8.2 Pivotal Role in the Reformed Model -- 8.3 Inclusion in Circuit Simulators -- 8.4 X(τ) as a Staple of Device Operation -- 8.5 A Repository of Information on Device Technology -- References -- Chapter 9 Extraction -- 9.1 Introduction -- 9.2 Obtaining the Element Functions -- 9.2.1 Obtaining the Standard Model Element Functions: The Fitter -- 9.2.2 Fitting the New Topology Model -- 9.3 Curve Fitting -- Reference -- Chapter 10 Obtaining the Currentand Capacitance Functions -- 10.1 Current Functions from Pulsed I(V) Measurements -- 10.2 Dynamic I(V) Reconstructor -- 10.3 Implications for Slow-RateTransients -- 10.4 Obtaining the Capacitance Functions -- 10.5 Charge Conservation -- 10.6 The Defining Case of VDS = 0V -- 10.7 Practical Example of Reformed Model Elements -- References -- Chapter 11 Practical Results -- 11.1 Introduction -- 11.2 First Test: Power Compression and Harmonic Generation -- 11.3 A 38 GHz Frequency Doubler -- 11.4 Two-Stageand Three-Stage500 mWMMIC -- 11.5 Harmonic Load Pull -- 11.6 Memory Effect: Basic Illustration -- References -- Chapter 12 Circuit Simulators -- 12.1 Introduction -- 12.2 Implementation in a Harmonic Balance Simulator -- 12.2.1 Particularizing the Model -- 12.2.2 Accommodating τ.
12.2.3 Run Time and Convergence -- 12.3 Experience with a Time-DomainSimulator -- 12.4 Simulation Prospects -- References -- Part III -- Chapter 13 Fundamentals of FET Operation -- 13.1 Introduction -- 13.2 Electron Depletion and Transport -- 13.3 The Space-ChargeLayer Extension X -- 13.4 The Flat d Approximation -- 13.5 The Uniform EyX Termination Approximation -- 13.6 Expressions for VGC and VD′G -- 13.7 The d-LiftPrinciple -- 13.8 The Delay τgm -- References -- Chapter 14 Current and Charge Conservation -- 14.1 Channel Current -- 14.2 Transreactance Current -- 14.3 Charge Conservation -- 14.4 Charge Storage by Pure Delay τ -- 14.5 Resistances RS and RI -- References -- Chapter 15 Charge Storage -- 15.1 Revisiting Capacitance -- 15.2 When VGS Changes -- 15.2.1 The Overall Picture -- 15.2.2 Branch Capacitance -- 15.2.3 Transcapacitance -- 15.2.4 Branch Charge Storage by Pure Delay -- 15.3 When VDS Changes -- 15.3.1 The Overall Picture -- 15.3.2 Branch Capacitance -- 15.3.3 Transcapacitance -- 15.3.4 Orthogonal Branch Charge Storage by Pure Delay -- 15.4 One Last Visit -- 15.4.1 Reconciliation of the Main Capacitances -- 15.4.2 Wherefore Cds? -- 15.4.3 The True Nature of the Standard Model -- 15.5 Enter the Transit Time -- References -- Chapter 16 Macro-CellSimulators -- 16.1 Introduction -- 16.2 Simulator Requirements -- 16.3 Macro-CellSolvers -- 16.3.1 The Macro-CellIdea -- 16.3.2 Construction -- 16.3.3 Choosing the Cells -- 16.3.4 Below-the-KneeRealism -- 16.3.5 Deconfinement of Hot Electrons -- 16.4 The PHEMT Macro-CellSolver -- 16.5 Applications and Limitations -- References -- Conclusion -- Acronyms and Abbreviations -- List of Symbols -- About the Author -- Index.
isbn 9781630818692
9781630818685
callnumber-first T - Technology
callnumber-subject TK - Electrical and Nuclear Engineering
callnumber-label TK7871
callnumber-sort TK 47871.95
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6877367
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 621 - Applied physics
dewey-full 621.3815284
dewey-sort 3621.3815284
dewey-raw 621.3815284
dewey-search 621.3815284
oclc_num 1296425002
work_keys_str_mv AT ladbrookepeterh nonlineardesignfetsandhemts
status_str n
ids_txt_mv (MiAaPQ)5006877367
(Au-PeEL)EBL6877367
(OCoLC)1296425002
carrierType_str_mv cr
is_hierarchy_title Nonlinear Design : FETs and HEMTs.
_version_ 1792331061880946688
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10816nam a22004573i 4500</leader><controlfield tag="001">5006877367</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073845.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781630818692</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781630818685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006877367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6877367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1296425002</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7871.95</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815284</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ladbrooke, Peter H.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Design :</subfield><subfield code="b">FETs and HEMTs.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Norwood :</subfield><subfield code="b">Artech House,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (373 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Nonlinear Design: FETs and HEMTs -- Contents -- Preface -- Acknowledgments -- Introduction -- Part I -- Chapter 1 Introduction -- 1.1 The Statement of the Problem -- 1.2 Verifying the Approach in MMIC Design: GaAs FETs and HEMTs -- 1.3 Aims of the Present Work -- 1.3.1 Motivation and Practical Application -- 1.3.2 The Physics-to-CircuitModel Construct -- 1.3.3 Applicability -- 1.4 Preview of Results -- 1.5 Organization of the Book -- 1.6 A Note on Figures -- References -- Chapter 2 Summary of Approaches and Needs -- 2.1 Why Models Are Important -- 2.2 Types of Nonlinear Models -- 2.3 Desirable Attributes -- 2.4 Behavioral or Black Box Characterization -- 2.5 Properties of Large-SignalModels in More Detail -- 2.5.1 List of Properties -- 2.5.2 The Subthreshold Region -- 2.5.3 Consequences of Fitting Well to Some Features of iD (vGS,vDS) butNot Others -- 2.5.4 Thermal Considerations -- 2.5.5 Construction of the Model from Measurements -- 2.5.6 The Position of Commercial Extractors -- 2.5.7 FET Size Considerations -- 2.5.8 Model Openness in Construction and Usability -- 2.5.9 Constraints Placed upon Models by Circuit Simulators -- 2.6 Rauscher and Willing -- 2.7 The Curtice Quadratic Model -- 2.7.1 Expression Used for the Modeling Current -- 2.7.2 Expression Used for the Modeling Capacitance -- 2.7.3 Basis -- 2.7.4 Underlying Soundness -- 2.7.5 Measurements Required -- 2.7.6 Openness of Procedure for Extracting the Model from Measurements -- 2.7.7 Scalability -- 2.7.8 General Comments -- 2.8 The Curtice-EttenbergModel -- 2.8.1 Expressions Used for Modeling Current -- 2.8.2 Expressions Used for Modeling Capacitance -- 2.8.3 Basis -- 2.8.4 Underlying Soundness -- 2.8.5 Measurements Required -- 2.8.6 Openness of Procedure for Extracting the Model from Measurements -- 2.8.7 Scalability -- 2.9 The Materka-KacprzakModel.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.9.1 Expressions Used for Modeling Current -- 2.9.2 Expressions Used for Modeling Capacitance -- 2.9.3 Basis -- 2.9.4 Underlying Soundness -- 2.9.5 Measurements Required -- 2.9.6 Openness of Procedure for Extracting the Model from Measurements -- 2.9.7 Scalability -- 2.10 An Illustrated Application -- 2.10.1 Current Equation: Modified Materka -- 2.10.2 Capacitance Equations: Use of the Statz Expressions -- 2.10.3 Results -- 2.11 The Statz Model -- 2.11.1 Expressions Used for Modeling Current -- 2.11.2 Expressions Used for Modeling Capacitance -- 2.11.3 Basis -- 2.11.4 Underlying Soundness -- 2.11.5 Measurements Required -- 2.11.6 Openness of Procedure for Extracting the Model from Measurements -- 2.11.7 Scalability -- 2.12 TriQuint Own Model (TOM) -- 2.12.1 Expressions Used for Modeling Current -- 2.12.2 Expressions Used for Modeling Capacitance -- 2.12.3 Basis -- 2.12.4 Underlying Soundness -- 2.12.5 Measurements Required -- 2.12.6 Openness of Procedure for Extracting the Model from Measurements -- 2.12.7 Scalability -- 2.13 The EEFET3 Model -- 2.13.1 Basis -- 2.13.2 Underlying Soundness -- 2.13.3 Openness of Procedure for Extracting the Model from Measurements -- 2.14 Other Models Using the Commonplace Equivalent Circuit -- 2.14.1 Dortu-MullerMethod -- 2.14.2 Rodrigues-Tellez -- 2.14.3 Tajima -- 2.14.4 University of Cantabria Model -- 2.14.5 University College Dublin Model -- 2.15 The Parker-SkellernModel -- 2.15.1 Shortcomings in Previous Practice -- 2.15.2 Parker's Scheme: Nested Transformations -- 2.15.3 Expressions Used for Modeling Capacitance -- 2.15.4 Basis and Underlying Soundness -- 2.15.5 Measurements Required -- 2.15.6 Openness of Procedure for Extracting the Model from Measurements -- 2.15.7 Scalability -- 2.15.8 General Comments -- 2.16 The Root Model -- 2.16.1 Basis -- 2.16.2 Underlying Soundness -- 2.16.3 Measurements Required.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.16.4 Thermal Effects -- 2.16.5 Openness of Procedure for Extracting the Model from Measurements -- 2.16.6 General Comments -- 2.17 The Angelov Model -- 2.17.1 Expression Used for Modeling Current -- 2.17.2 Expression Used for Modeling Capacitance -- 2.17.3 Basis -- 2.17.4 Underlying Soundness -- 2.17.5 Measurements Required -- 2.17.6 Openness of Procedure for Extracting the Model from Measurements -- 2.17.7 Scalability -- 2.17.8 General Comments -- 2.18 Conclusion -- References -- Chapter 3 Practical Behavior of FETs -- 3.1 dc I(V), Dynamic I(V), and RF Properties -- 3.1.1 Example Differences Between dc I(V) and Dynamic i(v -- 3.1.2 Breakdown Different at RF from dc -- 3.1.3 Memory Effects: Surface States, Deep Levels, and Self-Heating -- 3.1.4 S-Parameters:dc Bias and Pulsed Bias -- 3.1.5 Device-to-DeviceVariations -- 3.2 Bias Dependence of the Elements -- 3.2.1 Common Practice: The Beginning with Rauscher and Willing -- 3.2.2 Fitting to S-Parameters:Examples -- 3.2.3 The Commonplace Model -- 3.2.4 Bias Dependence of the Elements: Examples -- 3.3 τ: A Vital But Overlooked Physical Variable -- References -- Chapter 4 The Standard Model:Deriving the Elements -- 4.1 Element Functions Obtained by Fitting: True or Askew? -- 4.2 Neglect of Nonlinear Terms -- 4.2.1 The Problem of Nonlinear Extraction -- 4.2.2 Extracted Versus True Nonlinear Element Functions -- 4.2.3 Consequences for Nonlinear Circuit Simulation -- 4.3 Difficult Cases: Early SiC FET Example -- 4.4 Improvements Towards a True Nonlinear Model -- References -- Chapter 5 The Capacitance Puzzlein the Standard Model -- 5.1 The Form of Cgd and Cds: Fact or Artefact? -- 5.2 The Composition of Cgc -- 5.3 C from g: Deriving Capacitance from Conductance -- 5.4 Standard Model Capacitance in Review -- References -- Chapter 6 Dynamic I(V) Measurements.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1 Development of a Desktop Pulsed I(V) Instrument -- 6.2 Operation and Utilization -- 6.3 Memory and Other Effects -- 6.4 Contrariness as a Positive -- 6.5 Contemporary Instrumentation -- References -- Part II -- Chapter 7 Reformulating the Circuit Model -- 7.1 Introduction -- 7.2 The Core -- 7.3 Charge Flows When VGS Changes -- 7.4 Charge Flows When VDG Changes -- 7.5 Resistive and Ancillary Elements -- 7.6 Voltage Dependence of the Elements -- 7.7 Reduction in the Static State to the Standard Model -- 7.8 Previously Published Versions -- References -- Chapter 8 The Importance and Utility of τ -- 8.1 Nature and Origin -- 8.2 Pivotal Role in the Reformed Model -- 8.3 Inclusion in Circuit Simulators -- 8.4 X(τ) as a Staple of Device Operation -- 8.5 A Repository of Information on Device Technology -- References -- Chapter 9 Extraction -- 9.1 Introduction -- 9.2 Obtaining the Element Functions -- 9.2.1 Obtaining the Standard Model Element Functions: The Fitter -- 9.2.2 Fitting the New Topology Model -- 9.3 Curve Fitting -- Reference -- Chapter 10 Obtaining the Currentand Capacitance Functions -- 10.1 Current Functions from Pulsed I(V) Measurements -- 10.2 Dynamic I(V) Reconstructor -- 10.3 Implications for Slow-RateTransients -- 10.4 Obtaining the Capacitance Functions -- 10.5 Charge Conservation -- 10.6 The Defining Case of VDS = 0V -- 10.7 Practical Example of Reformed Model Elements -- References -- Chapter 11 Practical Results -- 11.1 Introduction -- 11.2 First Test: Power Compression and Harmonic Generation -- 11.3 A 38 GHz Frequency Doubler -- 11.4 Two-Stageand Three-Stage500 mWMMIC -- 11.5 Harmonic Load Pull -- 11.6 Memory Effect: Basic Illustration -- References -- Chapter 12 Circuit Simulators -- 12.1 Introduction -- 12.2 Implementation in a Harmonic Balance Simulator -- 12.2.1 Particularizing the Model -- 12.2.2 Accommodating τ.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.2.3 Run Time and Convergence -- 12.3 Experience with a Time-DomainSimulator -- 12.4 Simulation Prospects -- References -- Part III -- Chapter 13 Fundamentals of FET Operation -- 13.1 Introduction -- 13.2 Electron Depletion and Transport -- 13.3 The Space-ChargeLayer Extension X -- 13.4 The Flat d Approximation -- 13.5 The Uniform EyX Termination Approximation -- 13.6 Expressions for VGC and VD′G -- 13.7 The d-LiftPrinciple -- 13.8 The Delay τgm -- References -- Chapter 14 Current and Charge Conservation -- 14.1 Channel Current -- 14.2 Transreactance Current -- 14.3 Charge Conservation -- 14.4 Charge Storage by Pure Delay τ -- 14.5 Resistances RS and RI -- References -- Chapter 15 Charge Storage -- 15.1 Revisiting Capacitance -- 15.2 When VGS Changes -- 15.2.1 The Overall Picture -- 15.2.2 Branch Capacitance -- 15.2.3 Transcapacitance -- 15.2.4 Branch Charge Storage by Pure Delay -- 15.3 When VDS Changes -- 15.3.1 The Overall Picture -- 15.3.2 Branch Capacitance -- 15.3.3 Transcapacitance -- 15.3.4 Orthogonal Branch Charge Storage by Pure Delay -- 15.4 One Last Visit -- 15.4.1 Reconciliation of the Main Capacitances -- 15.4.2 Wherefore Cds? -- 15.4.3 The True Nature of the Standard Model -- 15.5 Enter the Transit Time -- References -- Chapter 16 Macro-CellSimulators -- 16.1 Introduction -- 16.2 Simulator Requirements -- 16.3 Macro-CellSolvers -- 16.3.1 The Macro-CellIdea -- 16.3.2 Construction -- 16.3.3 Choosing the Cells -- 16.3.4 Below-the-KneeRealism -- 16.3.5 Deconfinement of Hot Electrons -- 16.4 The PHEMT Macro-CellSolver -- 16.5 Applications and Limitations -- References -- Conclusion -- Acronyms and Abbreviations -- List of Symbols -- About the Author -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Field-effect transistors--Design and construction.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Modulation-doped field-effect transistors--Design and construction.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ladbrooke, Peter H.</subfield><subfield code="t">Nonlinear Design</subfield><subfield code="d">Norwood : Artech House,c2021</subfield><subfield code="z">9781630818685</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6877367</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>