The Plaston Concept : : Plastic Deformation in Structural Materials.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (278 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Part I Introduction
  • 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals
  • 1.1 Introduction
  • 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals
  • 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility
  • 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off
  • 1.5 Conclusions
  • References
  • Part II Simulation of Plaston and Plaston Induced Phenomena
  • 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals
  • Plastic Strain Carrier ``Plaston''
  • 2.1 Introduction
  • 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16)
  • 2.3 Dislocation Nucleation from GBs (ch2Junping16)
  • 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19)
  • 2.5 Summary
  • References
  • 3 Atomistic Study of Disclinations in Nanostructured Metals
  • 3.1 Introduction
  • 3.1.1 Various Deformation Modes in Nanostructured Metals
  • 3.1.2 Disclinations
  • 3.2 Grain Subdivision: Disclinations in Grains
  • 3.2.1 Strain Gradients in Severe Plastic Deformation Processes
  • 3.2.2 Grain Subdivision by Severe Plastic Deformation
  • 3.2.3 Partial Disclinations Induced by the Strain Gradient
  • 3.3 Fracture Toughness: Disclinations at the Grain Boundary
  • 3.3.1 High Strength and High Toughness
  • 3.3.2 Dislocation Emission from the Grain Boundary
  • 3.3.3 Intragranular Crack
  • 3.3.4 Intergranular Crack
  • 3.4 Conclusion
  • References
  • 4 Collective Motion of Atoms in Metals by First Principles Calculations
  • 4.1 Introduction.
  • 4.2 Phase-Transition Pathway in Metallic Elements
  • 4.3 HCP-Ti Under Shear Deformation Along Twinning Mode
  • References
  • 5 Descriptions of Dislocation via First Principles Calculations
  • 5.1 Introduction
  • 5.2 Stacking Fault Energy
  • 5.3 Analytical Description of Dislocations: Peierls-Nabarro Model
  • 5.4 First Principles Calculations of a Dislocation Core
  • 5.4.1 Atomic Modeling of a Dislocation Core
  • 5.4.2 First Principles Calculations
  • References
  • Part III Experimental Analyses of Plaston
  • 6 Plaston-Elemental Deformation Process Involving Cooperative Atom Motion
  • 6.1 Introduction
  • 6.2 Nucleation and Motion of Plastons (Possible Deformation Modes) Under Stress
  • 6.3 Cooperative Motion of Atoms in Plastons
  • 6.4 Origin of Cooperative Atom Motion in the Nucleation of Plastons
  • 6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials
  • 6.6 Conclusions
  • References
  • 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in α-Al2O3
  • 7.1 Introduction
  • 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries
  • 7.2.1 1/3&lt
  • 11bar2 0&gt
  • Basal Edge Dislocation
  • 7.2.2 1/3&lt
  • 11 bar2 0&gt
  • Basal Screw Dislocation
  • 7.2.3 &lt
  • 1bar1 00&gt
  • Edge Dislocation
  • 7.2.4 1/3&lt
  • bar1 101&gt
  • Mixed Dislocation
  • 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM
  • 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure
  • 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary
  • 7.4 Summary
  • References
  • 8 Nanomechanical Characterization of Metallic Materials
  • 8.1 Nanomechanical Characterization as an Advanced Technique
  • 8.2 Plasticity Initiation Analysis Through Nanoindentation Technique.
  • 8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior
  • 8.3.1 Grain Boundary
  • 8.3.2 Solid Solution Element
  • 8.3.3 Initial Dislocation Density
  • 8.4 Initiation and Subsequent Behavior of Plastic Deformation
  • 8.4.1 Sample Size Effect and Elementary Process
  • 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures
  • 8.4.3 Plasticity Induced by Phase Transformation
  • 8.5 Summary
  • References
  • 9 Synchrotron X-ray Study on Plaston in Metals
  • References
  • 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth
  • 10.1 Introduction: Small Crack Problem
  • 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source
  • 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design
  • 10.3.1 Geometrical Effect on Crack Tip Deformation
  • 10.3.2 Transformation-Induced Hardening and Lattice Expansion
  • 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth
  • 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity
  • 10.5.1 Strain-Age Hardening
  • 10.5.2 Effects of i-s Interaction
  • 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity
  • 10.7 Summary
  • References
  • Part IV Design and Development of High Performance Structural Materials
  • 11 Designing High-Mn Steels
  • 11.1 Introduction
  • 11.2 Plasticity Mechanisms in γ-austenite
  • 11.3 Polyhedron Models for FCC Plasticity Mechanisms
  • 11.4 Plasticity Mechanisms Under Tensile Loading
  • 11.4.1 Selection Rule and Generation Processes
  • 11.4.2 Transformation- and Twinning-Induced Plasticities
  • 11.4.3 Martensite/twin Variants
  • 11.5 Plasticity Mechanisms Under Cyclic Loading
  • 11.6 Concluding Remarks
  • References.
  • 12 Design and Development of Novel Wrought Magnesium Alloys
  • 12.1 Introduction
  • 12.2 Requirements for Wrought Magnesium Alloys
  • 12.2.1 Extruded Alloys
  • 12.2.2 Sheet Alloys
  • 12.3 Development of Industrially Viable Precipitation Hardenable Alloys
  • 12.4 Examples of Heat-Treatable Wrought Alloys
  • 12.4.1 Extruded Alloys
  • 12.4.2 Sheet Alloys
  • 12.4.3 Toward the Improvement of Room Temperature Formability
  • 12.4.4 Strengthening by G.P. Zones
  • 12.5 Summary and Future Outlooks
  • References.