The Plaston Concept : : Plastic Deformation in Structural Materials.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (278 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006874868
ctrlnum (MiAaPQ)5006874868
(Au-PeEL)EBL6874868
(OCoLC)1294345308
collection bib_alma
record_format marc
spelling Tanaka, Isao.
The Plaston Concept : Plastic Deformation in Structural Materials.
1st ed.
Singapore : Springer Singapore Pte. Limited, 2022.
©2022.
1 online resource (278 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Contents -- Part I Introduction -- 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals -- 1.1 Introduction -- 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals -- 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility -- 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off -- 1.5 Conclusions -- References -- Part II Simulation of Plaston and Plaston Induced Phenomena -- 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals -- Plastic Strain Carrier ``Plaston'' -- 2.1 Introduction -- 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16) -- 2.3 Dislocation Nucleation from GBs (ch2Junping16) -- 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19) -- 2.5 Summary -- References -- 3 Atomistic Study of Disclinations in Nanostructured Metals -- 3.1 Introduction -- 3.1.1 Various Deformation Modes in Nanostructured Metals -- 3.1.2 Disclinations -- 3.2 Grain Subdivision: Disclinations in Grains -- 3.2.1 Strain Gradients in Severe Plastic Deformation Processes -- 3.2.2 Grain Subdivision by Severe Plastic Deformation -- 3.2.3 Partial Disclinations Induced by the Strain Gradient -- 3.3 Fracture Toughness: Disclinations at the Grain Boundary -- 3.3.1 High Strength and High Toughness -- 3.3.2 Dislocation Emission from the Grain Boundary -- 3.3.3 Intragranular Crack -- 3.3.4 Intergranular Crack -- 3.4 Conclusion -- References -- 4 Collective Motion of Atoms in Metals by First Principles Calculations -- 4.1 Introduction.
4.2 Phase-Transition Pathway in Metallic Elements -- 4.3 HCP-Ti Under Shear Deformation Along Twinning Mode -- References -- 5 Descriptions of Dislocation via First Principles Calculations -- 5.1 Introduction -- 5.2 Stacking Fault Energy -- 5.3 Analytical Description of Dislocations: Peierls-Nabarro Model -- 5.4 First Principles Calculations of a Dislocation Core -- 5.4.1 Atomic Modeling of a Dislocation Core -- 5.4.2 First Principles Calculations -- References -- Part III Experimental Analyses of Plaston -- 6 Plaston-Elemental Deformation Process Involving Cooperative Atom Motion -- 6.1 Introduction -- 6.2 Nucleation and Motion of Plastons (Possible Deformation Modes) Under Stress -- 6.3 Cooperative Motion of Atoms in Plastons -- 6.4 Origin of Cooperative Atom Motion in the Nucleation of Plastons -- 6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials -- 6.6 Conclusions -- References -- 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in α-Al2O3 -- 7.1 Introduction -- 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries -- 7.2.1 1/3&lt -- 11bar2 0&gt -- Basal Edge Dislocation -- 7.2.2 1/3&lt -- 11 bar2 0&gt -- Basal Screw Dislocation -- 7.2.3 &lt -- 1bar1 00&gt -- Edge Dislocation -- 7.2.4 1/3&lt -- bar1 101&gt -- Mixed Dislocation -- 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM -- 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure -- 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary -- 7.4 Summary -- References -- 8 Nanomechanical Characterization of Metallic Materials -- 8.1 Nanomechanical Characterization as an Advanced Technique -- 8.2 Plasticity Initiation Analysis Through Nanoindentation Technique.
8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior -- 8.3.1 Grain Boundary -- 8.3.2 Solid Solution Element -- 8.3.3 Initial Dislocation Density -- 8.4 Initiation and Subsequent Behavior of Plastic Deformation -- 8.4.1 Sample Size Effect and Elementary Process -- 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures -- 8.4.3 Plasticity Induced by Phase Transformation -- 8.5 Summary -- References -- 9 Synchrotron X-ray Study on Plaston in Metals -- References -- 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth -- 10.1 Introduction: Small Crack Problem -- 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source -- 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design -- 10.3.1 Geometrical Effect on Crack Tip Deformation -- 10.3.2 Transformation-Induced Hardening and Lattice Expansion -- 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth -- 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity -- 10.5.1 Strain-Age Hardening -- 10.5.2 Effects of i-s Interaction -- 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity -- 10.7 Summary -- References -- Part IV Design and Development of High Performance Structural Materials -- 11 Designing High-Mn Steels -- 11.1 Introduction -- 11.2 Plasticity Mechanisms in γ-austenite -- 11.3 Polyhedron Models for FCC Plasticity Mechanisms -- 11.4 Plasticity Mechanisms Under Tensile Loading -- 11.4.1 Selection Rule and Generation Processes -- 11.4.2 Transformation- and Twinning-Induced Plasticities -- 11.4.3 Martensite/twin Variants -- 11.5 Plasticity Mechanisms Under Cyclic Loading -- 11.6 Concluding Remarks -- References.
12 Design and Development of Novel Wrought Magnesium Alloys -- 12.1 Introduction -- 12.2 Requirements for Wrought Magnesium Alloys -- 12.2.1 Extruded Alloys -- 12.2.2 Sheet Alloys -- 12.3 Development of Industrially Viable Precipitation Hardenable Alloys -- 12.4 Examples of Heat-Treatable Wrought Alloys -- 12.4.1 Extruded Alloys -- 12.4.2 Sheet Alloys -- 12.4.3 Toward the Improvement of Room Temperature Formability -- 12.4.4 Strengthening by G.P. Zones -- 12.5 Summary and Future Outlooks -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Tsuji, Nobuhiro.
Inui, Haruyuki.
Print version: Tanaka, Isao The Plaston Concept Singapore : Springer Singapore Pte. Limited,c2022 9789811677144
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6874868 Click to View
language English
format eBook
author Tanaka, Isao.
spellingShingle Tanaka, Isao.
The Plaston Concept : Plastic Deformation in Structural Materials.
Intro -- Preface -- Contents -- Part I Introduction -- 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals -- 1.1 Introduction -- 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals -- 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility -- 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off -- 1.5 Conclusions -- References -- Part II Simulation of Plaston and Plaston Induced Phenomena -- 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals -- Plastic Strain Carrier ``Plaston'' -- 2.1 Introduction -- 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16) -- 2.3 Dislocation Nucleation from GBs (ch2Junping16) -- 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19) -- 2.5 Summary -- References -- 3 Atomistic Study of Disclinations in Nanostructured Metals -- 3.1 Introduction -- 3.1.1 Various Deformation Modes in Nanostructured Metals -- 3.1.2 Disclinations -- 3.2 Grain Subdivision: Disclinations in Grains -- 3.2.1 Strain Gradients in Severe Plastic Deformation Processes -- 3.2.2 Grain Subdivision by Severe Plastic Deformation -- 3.2.3 Partial Disclinations Induced by the Strain Gradient -- 3.3 Fracture Toughness: Disclinations at the Grain Boundary -- 3.3.1 High Strength and High Toughness -- 3.3.2 Dislocation Emission from the Grain Boundary -- 3.3.3 Intragranular Crack -- 3.3.4 Intergranular Crack -- 3.4 Conclusion -- References -- 4 Collective Motion of Atoms in Metals by First Principles Calculations -- 4.1 Introduction.
4.2 Phase-Transition Pathway in Metallic Elements -- 4.3 HCP-Ti Under Shear Deformation Along Twinning Mode -- References -- 5 Descriptions of Dislocation via First Principles Calculations -- 5.1 Introduction -- 5.2 Stacking Fault Energy -- 5.3 Analytical Description of Dislocations: Peierls-Nabarro Model -- 5.4 First Principles Calculations of a Dislocation Core -- 5.4.1 Atomic Modeling of a Dislocation Core -- 5.4.2 First Principles Calculations -- References -- Part III Experimental Analyses of Plaston -- 6 Plaston-Elemental Deformation Process Involving Cooperative Atom Motion -- 6.1 Introduction -- 6.2 Nucleation and Motion of Plastons (Possible Deformation Modes) Under Stress -- 6.3 Cooperative Motion of Atoms in Plastons -- 6.4 Origin of Cooperative Atom Motion in the Nucleation of Plastons -- 6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials -- 6.6 Conclusions -- References -- 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in α-Al2O3 -- 7.1 Introduction -- 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries -- 7.2.1 1/3&lt -- 11bar2 0&gt -- Basal Edge Dislocation -- 7.2.2 1/3&lt -- 11 bar2 0&gt -- Basal Screw Dislocation -- 7.2.3 &lt -- 1bar1 00&gt -- Edge Dislocation -- 7.2.4 1/3&lt -- bar1 101&gt -- Mixed Dislocation -- 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM -- 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure -- 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary -- 7.4 Summary -- References -- 8 Nanomechanical Characterization of Metallic Materials -- 8.1 Nanomechanical Characterization as an Advanced Technique -- 8.2 Plasticity Initiation Analysis Through Nanoindentation Technique.
8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior -- 8.3.1 Grain Boundary -- 8.3.2 Solid Solution Element -- 8.3.3 Initial Dislocation Density -- 8.4 Initiation and Subsequent Behavior of Plastic Deformation -- 8.4.1 Sample Size Effect and Elementary Process -- 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures -- 8.4.3 Plasticity Induced by Phase Transformation -- 8.5 Summary -- References -- 9 Synchrotron X-ray Study on Plaston in Metals -- References -- 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth -- 10.1 Introduction: Small Crack Problem -- 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source -- 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design -- 10.3.1 Geometrical Effect on Crack Tip Deformation -- 10.3.2 Transformation-Induced Hardening and Lattice Expansion -- 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth -- 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity -- 10.5.1 Strain-Age Hardening -- 10.5.2 Effects of i-s Interaction -- 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity -- 10.7 Summary -- References -- Part IV Design and Development of High Performance Structural Materials -- 11 Designing High-Mn Steels -- 11.1 Introduction -- 11.2 Plasticity Mechanisms in γ-austenite -- 11.3 Polyhedron Models for FCC Plasticity Mechanisms -- 11.4 Plasticity Mechanisms Under Tensile Loading -- 11.4.1 Selection Rule and Generation Processes -- 11.4.2 Transformation- and Twinning-Induced Plasticities -- 11.4.3 Martensite/twin Variants -- 11.5 Plasticity Mechanisms Under Cyclic Loading -- 11.6 Concluding Remarks -- References.
12 Design and Development of Novel Wrought Magnesium Alloys -- 12.1 Introduction -- 12.2 Requirements for Wrought Magnesium Alloys -- 12.2.1 Extruded Alloys -- 12.2.2 Sheet Alloys -- 12.3 Development of Industrially Viable Precipitation Hardenable Alloys -- 12.4 Examples of Heat-Treatable Wrought Alloys -- 12.4.1 Extruded Alloys -- 12.4.2 Sheet Alloys -- 12.4.3 Toward the Improvement of Room Temperature Formability -- 12.4.4 Strengthening by G.P. Zones -- 12.5 Summary and Future Outlooks -- References.
author_facet Tanaka, Isao.
Tsuji, Nobuhiro.
Inui, Haruyuki.
author_variant i t it
author2 Tsuji, Nobuhiro.
Inui, Haruyuki.
author2_variant n t nt
h i hi
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Tanaka, Isao.
title The Plaston Concept : Plastic Deformation in Structural Materials.
title_sub Plastic Deformation in Structural Materials.
title_full The Plaston Concept : Plastic Deformation in Structural Materials.
title_fullStr The Plaston Concept : Plastic Deformation in Structural Materials.
title_full_unstemmed The Plaston Concept : Plastic Deformation in Structural Materials.
title_auth The Plaston Concept : Plastic Deformation in Structural Materials.
title_new The Plaston Concept :
title_sort the plaston concept : plastic deformation in structural materials.
publisher Springer Singapore Pte. Limited,
publishDate 2022
physical 1 online resource (278 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Part I Introduction -- 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals -- 1.1 Introduction -- 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals -- 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility -- 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off -- 1.5 Conclusions -- References -- Part II Simulation of Plaston and Plaston Induced Phenomena -- 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals -- Plastic Strain Carrier ``Plaston'' -- 2.1 Introduction -- 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16) -- 2.3 Dislocation Nucleation from GBs (ch2Junping16) -- 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19) -- 2.5 Summary -- References -- 3 Atomistic Study of Disclinations in Nanostructured Metals -- 3.1 Introduction -- 3.1.1 Various Deformation Modes in Nanostructured Metals -- 3.1.2 Disclinations -- 3.2 Grain Subdivision: Disclinations in Grains -- 3.2.1 Strain Gradients in Severe Plastic Deformation Processes -- 3.2.2 Grain Subdivision by Severe Plastic Deformation -- 3.2.3 Partial Disclinations Induced by the Strain Gradient -- 3.3 Fracture Toughness: Disclinations at the Grain Boundary -- 3.3.1 High Strength and High Toughness -- 3.3.2 Dislocation Emission from the Grain Boundary -- 3.3.3 Intragranular Crack -- 3.3.4 Intergranular Crack -- 3.4 Conclusion -- References -- 4 Collective Motion of Atoms in Metals by First Principles Calculations -- 4.1 Introduction.
4.2 Phase-Transition Pathway in Metallic Elements -- 4.3 HCP-Ti Under Shear Deformation Along Twinning Mode -- References -- 5 Descriptions of Dislocation via First Principles Calculations -- 5.1 Introduction -- 5.2 Stacking Fault Energy -- 5.3 Analytical Description of Dislocations: Peierls-Nabarro Model -- 5.4 First Principles Calculations of a Dislocation Core -- 5.4.1 Atomic Modeling of a Dislocation Core -- 5.4.2 First Principles Calculations -- References -- Part III Experimental Analyses of Plaston -- 6 Plaston-Elemental Deformation Process Involving Cooperative Atom Motion -- 6.1 Introduction -- 6.2 Nucleation and Motion of Plastons (Possible Deformation Modes) Under Stress -- 6.3 Cooperative Motion of Atoms in Plastons -- 6.4 Origin of Cooperative Atom Motion in the Nucleation of Plastons -- 6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials -- 6.6 Conclusions -- References -- 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in α-Al2O3 -- 7.1 Introduction -- 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries -- 7.2.1 1/3&lt -- 11bar2 0&gt -- Basal Edge Dislocation -- 7.2.2 1/3&lt -- 11 bar2 0&gt -- Basal Screw Dislocation -- 7.2.3 &lt -- 1bar1 00&gt -- Edge Dislocation -- 7.2.4 1/3&lt -- bar1 101&gt -- Mixed Dislocation -- 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM -- 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure -- 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary -- 7.4 Summary -- References -- 8 Nanomechanical Characterization of Metallic Materials -- 8.1 Nanomechanical Characterization as an Advanced Technique -- 8.2 Plasticity Initiation Analysis Through Nanoindentation Technique.
8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior -- 8.3.1 Grain Boundary -- 8.3.2 Solid Solution Element -- 8.3.3 Initial Dislocation Density -- 8.4 Initiation and Subsequent Behavior of Plastic Deformation -- 8.4.1 Sample Size Effect and Elementary Process -- 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures -- 8.4.3 Plasticity Induced by Phase Transformation -- 8.5 Summary -- References -- 9 Synchrotron X-ray Study on Plaston in Metals -- References -- 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth -- 10.1 Introduction: Small Crack Problem -- 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source -- 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design -- 10.3.1 Geometrical Effect on Crack Tip Deformation -- 10.3.2 Transformation-Induced Hardening and Lattice Expansion -- 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth -- 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity -- 10.5.1 Strain-Age Hardening -- 10.5.2 Effects of i-s Interaction -- 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity -- 10.7 Summary -- References -- Part IV Design and Development of High Performance Structural Materials -- 11 Designing High-Mn Steels -- 11.1 Introduction -- 11.2 Plasticity Mechanisms in γ-austenite -- 11.3 Polyhedron Models for FCC Plasticity Mechanisms -- 11.4 Plasticity Mechanisms Under Tensile Loading -- 11.4.1 Selection Rule and Generation Processes -- 11.4.2 Transformation- and Twinning-Induced Plasticities -- 11.4.3 Martensite/twin Variants -- 11.5 Plasticity Mechanisms Under Cyclic Loading -- 11.6 Concluding Remarks -- References.
12 Design and Development of Novel Wrought Magnesium Alloys -- 12.1 Introduction -- 12.2 Requirements for Wrought Magnesium Alloys -- 12.2.1 Extruded Alloys -- 12.2.2 Sheet Alloys -- 12.3 Development of Industrially Viable Precipitation Hardenable Alloys -- 12.4 Examples of Heat-Treatable Wrought Alloys -- 12.4.1 Extruded Alloys -- 12.4.2 Sheet Alloys -- 12.4.3 Toward the Improvement of Room Temperature Formability -- 12.4.4 Strengthening by G.P. Zones -- 12.5 Summary and Future Outlooks -- References.
isbn 9789811677151
9789811677144
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA401-492
callnumber-sort TA 3401 3492
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6874868
illustrated Not Illustrated
oclc_num 1294345308
work_keys_str_mv AT tanakaisao theplastonconceptplasticdeformationinstructuralmaterials
AT tsujinobuhiro theplastonconceptplasticdeformationinstructuralmaterials
AT inuiharuyuki theplastonconceptplasticdeformationinstructuralmaterials
AT tanakaisao plastonconceptplasticdeformationinstructuralmaterials
AT tsujinobuhiro plastonconceptplasticdeformationinstructuralmaterials
AT inuiharuyuki plastonconceptplasticdeformationinstructuralmaterials
status_str n
ids_txt_mv (MiAaPQ)5006874868
(Au-PeEL)EBL6874868
(OCoLC)1294345308
carrierType_str_mv cr
is_hierarchy_title The Plaston Concept : Plastic Deformation in Structural Materials.
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1792331061827469313
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08160nam a22004333i 4500</leader><controlfield tag="001">5006874868</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073845.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2022 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811677151</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789811677144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006874868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6874868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1294345308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tanaka, Isao.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Plaston Concept :</subfield><subfield code="b">Plastic Deformation in Structural Materials.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer Singapore Pte. Limited,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (278 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Part I Introduction -- 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals -- 1.1 Introduction -- 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals -- 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility -- 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off -- 1.5 Conclusions -- References -- Part II Simulation of Plaston and Plaston Induced Phenomena -- 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals -- Plastic Strain Carrier ``Plaston'' -- 2.1 Introduction -- 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16) -- 2.3 Dislocation Nucleation from GBs (ch2Junping16) -- 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19) -- 2.5 Summary -- References -- 3 Atomistic Study of Disclinations in Nanostructured Metals -- 3.1 Introduction -- 3.1.1 Various Deformation Modes in Nanostructured Metals -- 3.1.2 Disclinations -- 3.2 Grain Subdivision: Disclinations in Grains -- 3.2.1 Strain Gradients in Severe Plastic Deformation Processes -- 3.2.2 Grain Subdivision by Severe Plastic Deformation -- 3.2.3 Partial Disclinations Induced by the Strain Gradient -- 3.3 Fracture Toughness: Disclinations at the Grain Boundary -- 3.3.1 High Strength and High Toughness -- 3.3.2 Dislocation Emission from the Grain Boundary -- 3.3.3 Intragranular Crack -- 3.3.4 Intergranular Crack -- 3.4 Conclusion -- References -- 4 Collective Motion of Atoms in Metals by First Principles Calculations -- 4.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 Phase-Transition Pathway in Metallic Elements -- 4.3 HCP-Ti Under Shear Deformation Along Twinning Mode -- References -- 5 Descriptions of Dislocation via First Principles Calculations -- 5.1 Introduction -- 5.2 Stacking Fault Energy -- 5.3 Analytical Description of Dislocations: Peierls-Nabarro Model -- 5.4 First Principles Calculations of a Dislocation Core -- 5.4.1 Atomic Modeling of a Dislocation Core -- 5.4.2 First Principles Calculations -- References -- Part III Experimental Analyses of Plaston -- 6 Plaston-Elemental Deformation Process Involving Cooperative Atom Motion -- 6.1 Introduction -- 6.2 Nucleation and Motion of Plastons (Possible Deformation Modes) Under Stress -- 6.3 Cooperative Motion of Atoms in Plastons -- 6.4 Origin of Cooperative Atom Motion in the Nucleation of Plastons -- 6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials -- 6.6 Conclusions -- References -- 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in α-Al2O3 -- 7.1 Introduction -- 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries -- 7.2.1 1/3&amp;lt -- 11bar2 0&amp;gt -- Basal Edge Dislocation -- 7.2.2 1/3&amp;lt -- 11 bar2 0&amp;gt -- Basal Screw Dislocation -- 7.2.3 &amp;lt -- 1bar1 00&amp;gt -- Edge Dislocation -- 7.2.4 1/3&amp;lt -- bar1 101&amp;gt -- Mixed Dislocation -- 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM -- 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure -- 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary -- 7.4 Summary -- References -- 8 Nanomechanical Characterization of Metallic Materials -- 8.1 Nanomechanical Characterization as an Advanced Technique -- 8.2 Plasticity Initiation Analysis Through Nanoindentation Technique.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior -- 8.3.1 Grain Boundary -- 8.3.2 Solid Solution Element -- 8.3.3 Initial Dislocation Density -- 8.4 Initiation and Subsequent Behavior of Plastic Deformation -- 8.4.1 Sample Size Effect and Elementary Process -- 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures -- 8.4.3 Plasticity Induced by Phase Transformation -- 8.5 Summary -- References -- 9 Synchrotron X-ray Study on Plaston in Metals -- References -- 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth -- 10.1 Introduction: Small Crack Problem -- 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source -- 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design -- 10.3.1 Geometrical Effect on Crack Tip Deformation -- 10.3.2 Transformation-Induced Hardening and Lattice Expansion -- 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth -- 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity -- 10.5.1 Strain-Age Hardening -- 10.5.2 Effects of i-s Interaction -- 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity -- 10.7 Summary -- References -- Part IV Design and Development of High Performance Structural Materials -- 11 Designing High-Mn Steels -- 11.1 Introduction -- 11.2 Plasticity Mechanisms in γ-austenite -- 11.3 Polyhedron Models for FCC Plasticity Mechanisms -- 11.4 Plasticity Mechanisms Under Tensile Loading -- 11.4.1 Selection Rule and Generation Processes -- 11.4.2 Transformation- and Twinning-Induced Plasticities -- 11.4.3 Martensite/twin Variants -- 11.5 Plasticity Mechanisms Under Cyclic Loading -- 11.6 Concluding Remarks -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12 Design and Development of Novel Wrought Magnesium Alloys -- 12.1 Introduction -- 12.2 Requirements for Wrought Magnesium Alloys -- 12.2.1 Extruded Alloys -- 12.2.2 Sheet Alloys -- 12.3 Development of Industrially Viable Precipitation Hardenable Alloys -- 12.4 Examples of Heat-Treatable Wrought Alloys -- 12.4.1 Extruded Alloys -- 12.4.2 Sheet Alloys -- 12.4.3 Toward the Improvement of Room Temperature Formability -- 12.4.4 Strengthening by G.P. Zones -- 12.5 Summary and Future Outlooks -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsuji, Nobuhiro.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Inui, Haruyuki.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Tanaka, Isao</subfield><subfield code="t">The Plaston Concept</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2022</subfield><subfield code="z">9789811677144</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6874868</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>