The Plaston Concept : : Plastic Deformation in Structural Materials.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (278 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08160nam a22004333i 4500
001 5006874868
003 MiAaPQ
005 20240229073845.0
006 m o d |
007 cr cnu||||||||
008 240229s2022 xx o ||||0 eng d
020 |a 9789811677151  |q (electronic bk.) 
020 |z 9789811677144 
035 |a (MiAaPQ)5006874868 
035 |a (Au-PeEL)EBL6874868 
035 |a (OCoLC)1294345308 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a TA401-492 
100 1 |a Tanaka, Isao. 
245 1 4 |a The Plaston Concept :  |b Plastic Deformation in Structural Materials. 
250 |a 1st ed. 
264 1 |a Singapore :  |b Springer Singapore Pte. Limited,  |c 2022. 
264 4 |c ©2022. 
300 |a 1 online resource (278 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Preface -- Contents -- Part I Introduction -- 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals -- 1.1 Introduction -- 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals -- 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility -- 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off -- 1.5 Conclusions -- References -- Part II Simulation of Plaston and Plaston Induced Phenomena -- 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals -- Plastic Strain Carrier ``Plaston'' -- 2.1 Introduction -- 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16) -- 2.3 Dislocation Nucleation from GBs (ch2Junping16) -- 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19) -- 2.5 Summary -- References -- 3 Atomistic Study of Disclinations in Nanostructured Metals -- 3.1 Introduction -- 3.1.1 Various Deformation Modes in Nanostructured Metals -- 3.1.2 Disclinations -- 3.2 Grain Subdivision: Disclinations in Grains -- 3.2.1 Strain Gradients in Severe Plastic Deformation Processes -- 3.2.2 Grain Subdivision by Severe Plastic Deformation -- 3.2.3 Partial Disclinations Induced by the Strain Gradient -- 3.3 Fracture Toughness: Disclinations at the Grain Boundary -- 3.3.1 High Strength and High Toughness -- 3.3.2 Dislocation Emission from the Grain Boundary -- 3.3.3 Intragranular Crack -- 3.3.4 Intergranular Crack -- 3.4 Conclusion -- References -- 4 Collective Motion of Atoms in Metals by First Principles Calculations -- 4.1 Introduction. 
505 8 |a 4.2 Phase-Transition Pathway in Metallic Elements -- 4.3 HCP-Ti Under Shear Deformation Along Twinning Mode -- References -- 5 Descriptions of Dislocation via First Principles Calculations -- 5.1 Introduction -- 5.2 Stacking Fault Energy -- 5.3 Analytical Description of Dislocations: Peierls-Nabarro Model -- 5.4 First Principles Calculations of a Dislocation Core -- 5.4.1 Atomic Modeling of a Dislocation Core -- 5.4.2 First Principles Calculations -- References -- Part III Experimental Analyses of Plaston -- 6 Plaston-Elemental Deformation Process Involving Cooperative Atom Motion -- 6.1 Introduction -- 6.2 Nucleation and Motion of Plastons (Possible Deformation Modes) Under Stress -- 6.3 Cooperative Motion of Atoms in Plastons -- 6.4 Origin of Cooperative Atom Motion in the Nucleation of Plastons -- 6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials -- 6.6 Conclusions -- References -- 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in α-Al2O3 -- 7.1 Introduction -- 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries -- 7.2.1 1/3&lt -- 11bar2 0&gt -- Basal Edge Dislocation -- 7.2.2 1/3&lt -- 11 bar2 0&gt -- Basal Screw Dislocation -- 7.2.3 &lt -- 1bar1 00&gt -- Edge Dislocation -- 7.2.4 1/3&lt -- bar1 101&gt -- Mixed Dislocation -- 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM -- 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure -- 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary -- 7.4 Summary -- References -- 8 Nanomechanical Characterization of Metallic Materials -- 8.1 Nanomechanical Characterization as an Advanced Technique -- 8.2 Plasticity Initiation Analysis Through Nanoindentation Technique. 
505 8 |a 8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior -- 8.3.1 Grain Boundary -- 8.3.2 Solid Solution Element -- 8.3.3 Initial Dislocation Density -- 8.4 Initiation and Subsequent Behavior of Plastic Deformation -- 8.4.1 Sample Size Effect and Elementary Process -- 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures -- 8.4.3 Plasticity Induced by Phase Transformation -- 8.5 Summary -- References -- 9 Synchrotron X-ray Study on Plaston in Metals -- References -- 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth -- 10.1 Introduction: Small Crack Problem -- 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source -- 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design -- 10.3.1 Geometrical Effect on Crack Tip Deformation -- 10.3.2 Transformation-Induced Hardening and Lattice Expansion -- 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth -- 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity -- 10.5.1 Strain-Age Hardening -- 10.5.2 Effects of i-s Interaction -- 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity -- 10.7 Summary -- References -- Part IV Design and Development of High Performance Structural Materials -- 11 Designing High-Mn Steels -- 11.1 Introduction -- 11.2 Plasticity Mechanisms in γ-austenite -- 11.3 Polyhedron Models for FCC Plasticity Mechanisms -- 11.4 Plasticity Mechanisms Under Tensile Loading -- 11.4.1 Selection Rule and Generation Processes -- 11.4.2 Transformation- and Twinning-Induced Plasticities -- 11.4.3 Martensite/twin Variants -- 11.5 Plasticity Mechanisms Under Cyclic Loading -- 11.6 Concluding Remarks -- References. 
505 8 |a 12 Design and Development of Novel Wrought Magnesium Alloys -- 12.1 Introduction -- 12.2 Requirements for Wrought Magnesium Alloys -- 12.2.1 Extruded Alloys -- 12.2.2 Sheet Alloys -- 12.3 Development of Industrially Viable Precipitation Hardenable Alloys -- 12.4 Examples of Heat-Treatable Wrought Alloys -- 12.4.1 Extruded Alloys -- 12.4.2 Sheet Alloys -- 12.4.3 Toward the Improvement of Room Temperature Formability -- 12.4.4 Strengthening by G.P. Zones -- 12.5 Summary and Future Outlooks -- References. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Tsuji, Nobuhiro. 
700 1 |a Inui, Haruyuki. 
776 0 8 |i Print version:  |a Tanaka, Isao  |t The Plaston Concept  |d Singapore : Springer Singapore Pte. Limited,c2022  |z 9789811677144 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6874868  |z Click to View