Antenna-On-Chip : : Design, Challenges, and Opportunities.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Norwood : : Artech House,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (275 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Antenna-on-Chip: Design, Challenges, and Opportunities
  • Contents
  • Preface
  • 1 Introduction to Antenna on Chip
  • 1.1 Antennas and ICs: A Brief History
  • 1.2 Circuit Integration Technologies
  • 1.2.1 Interconnection Technologies
  • 1.2.2 MCMs
  • 1.2.3 SiP
  • 1.2.4 SoP
  • 1.2.5 SoC
  • 1.3 On-Chip Antennas: Benefits and Opportunities
  • 1.3.1 Cost and Size
  • 1.3.2 The 50Ω Boundary: Not Needed Anymore
  • 1.3.3 Integration and Robustness
  • 1.3.4 Fabrication Precision and Repeatability
  • 1.4 AoC: An Inevitable Choice for the Future
  • 1.5 Conclusion
  • References
  • 2 Design and Implementation Challenges
  • 2.1 Incompatible Silicon Substrate
  • 2.1.1 Low Resistivity of Silicon
  • 2.1.2 High Dielectric Constant of Silicon
  • 2.1.3 Surface Waves
  • 2.2 Limitations of the CMOS Stack-Up
  • 2.3 Modeling and Simulation Challenges
  • 2.3.1 Cosimulation Tools
  • 2.4 Size and Layout Challenges
  • 2.4.1 DRC
  • 2.5 Fabrication Tolerances
  • 2.6 Coupling and Interference Issues
  • 2.6.1 Coupling from the Antenna to the Circuit
  • 2.6.2 Coupling from Circuits to the Antenna
  • 2.7 Characterization Challenges
  • 2.7.1 Reflection from the Probe
  • 2.7.2 Radiation of the Probe
  • 2.7.3 Radiation Blockage or Shadowing
  • 2.7.4 AUT Movement Restrictions
  • 2.7.5 Measurement of Standalone Antennas
  • 2.8 Packaging Challenges
  • 2.9 Conclusion
  • References
  • 3 Radiation Enhancement and Measurement Techniques
  • 3.1 Substrate Post-Processing Techniques
  • 3.1.1 Substrate Thinning
  • 3.1.2 High-Resistivity Substrates
  • 3.1.3 Substrate Micromachining
  • 3.2  On-Chip Reflecting Surfaces
  • 3.2.1  AMCs
  • 3.3 Off-Chip Techniques
  • 3.3.1 Dielectric Superstrates
  • 3.3.2 Artificial Dielectric Layers
  • 3.3.3 Dielectric Resonator Loading
  • 3.3.4 Dielectric Lens
  • 3.4 3-D and MEMS-Based Antennas
  • 3.4.1  Suspended Antennas
  • 3.4.2 Vertical Monopoles.
  • 3.4.3 Movable Antennas
  • 3.4.4 BWAs
  • 3.5 Measurement and Characterization Techniques
  • 3.5.1 Mitigating the Effects of On-Chip Circuits
  • 3.5.2 Mitigating the Effects of Measurement Setup
  • 3.6 Conclusion
  • References
  • 4 Codesign of Circuits and Antennas
  • 4.1 Codesign Considerations
  • 4.1.1 AoC in Receiver
  • 4.1.2 AoC in Transmitter
  • 4.1.3 AoC in the Transceiver
  • 4.2 Choice of Transistor Technology
  • 4.3 Impedance Matching
  • 4.3.1 LNA-Antenna Matching
  • 4.3.2 PA-Antenna Matching
  • 4.3.3 T/R Switch-Antenna Matching
  • 4.4 Circuit-Compatible Antenna Layout and Design
  • 4.4.1 Size and Layout Codesign
  • 4.4.2 Differential and Single-Ended Feeding
  • 4.4.3 On-Chip Antennas with Added Functionality
  • 4.5 Codesign to Prevent Antenna-Circuit Coupling
  • 4.6 Antenna Circuit Cosimulation
  • 4.7 Codesign of Package and Antenna
  • 4.7.1 Packaging Design Considerations
  • 4.7.2 Packaging Materials
  • 4.7.3 Codesign for Performance Enhancement
  • 4.8 Conclusion
  • References
  • 5 AoC Design Example
  • 5.1 Design Flow
  • 5.2 71-GHz Oscillator Transmitter with an On-Chip Monopole Antenna
  • 5.3 Antenna Simulation
  • 5.3.1 Substrate
  • 5.3.2 Antenna Element
  • 5.3.3 AMC
  • 5.3.4 Superstrate Layer
  • 5.3.5 Lens Integrated Package
  • 5.4 Circuit Simulation
  • 5.4.1 Adding a Design Library
  • 5.4.2 Schematic Design
  • 5.4.3 Layout Design
  • 5.4.4 DRC
  • 5.4.5 LVS
  • 5.4.6 Parasitic Extraction
  • 5.4.7 Post-Layout Simulation
  • 5.5 Cosimulation
  • 5.5.1 Simulating the Circuit in EM Simulator
  • 5.5.2 Simulating the Antenna in the IC Simulator
  • 5.6 Fabrication
  • 5.7 Measurement and Characterization
  • 5.7.1 Standalone Characterization
  • 5.7.2 Active Characterization
  • 5.8 Conclusion
  • References
  • 6 Future Trends in AoC
  • 6.1 Performance Enhancement: A Continuing Challenge
  • 6.2 Codesign and Multifunctional Role of AoC.
  • 6.3  Specialized Radios and Implantable Applications
  • 6.4 Energy-Harvesting AoCs
  • 6.5 Miniaturization of Low-Frequency AoCs
  • 6.6 Terahertz Applications
  • 6.7 MEMS and CMOS Codesign
  • 6.8 Wireless Networks on Chip
  • 6.9 Future Role of Foundries in AoC
  • 6.10 Advances in Simulation and Measurement
  • 6.11 Conclusion
  • References
  • Acronyms
  • About the Authors
  • Index.