Optimization-Based Energy Management for Multi-Energy Maritime Grids.

Saved in:
Bibliographic Details
Superior document:Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ; v.11
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series
Online Access:
Physical Description:1 online resource (211 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Acknowledgments
  • Contents
  • About the Authors
  • Abbreviations
  • 1 Introduction to the Multi-energy Maritime Grids
  • 1.1 Background and Motivation
  • 1.1.1 Economy Growth and the Demand for Maritime Transport
  • 1.1.2 Ship Supply Capacity and Market Structure
  • 1.1.3 Shipping Services and Ports
  • 1.1.4 The Path to the Green Shipping
  • 1.2 Promising Technologies
  • 1.2.1 Overview
  • 1.2.2 Selected Technical Designs for Energy Efficiency Improvement
  • 1.2.3 Selected Alternative Fuels or Energy Sources
  • 1.3 Next-Generation Maritime Grids
  • 1.3.1 Shipboard Microgrid
  • 1.3.2 Seaport Microgrid
  • 1.3.3 Coordination Between Shipboard and Seaport Microgrids
  • 1.4 Summary
  • References
  • 2 Basics for Optimization Problem
  • 2.1 Overview of Optimization Problems
  • 2.1.1 General Forms
  • 2.1.2 Classifications of Optimization Problems
  • 2.2 Optimization Problems with Uncertainties
  • 2.2.1 Stochastic Optimization
  • 2.2.2 Robust Optimization
  • 2.2.3 Interval Optimization
  • 2.3 Convex Optimization
  • 2.3.1 Semi-definite Programming
  • 2.3.2 Second-Order Cone Programming
  • 2.4 Optimization Frameworks
  • 2.4.1 Two-Stage Optimization
  • 2.4.2 Bi-level Optimization
  • 2.5 Summary
  • References
  • 3 Mathematical Formulation of Management Targets
  • 3.1 Overview of the Management Tasks
  • 3.2 Navigation Tasks
  • 3.2.1 Typical Cases
  • 3.2.2 Mathematical Model
  • 3.3 Energy Consumption
  • 3.3.1 Diesel Engines/Generators
  • 3.3.2 Fuel Cell
  • 3.3.3 Energy Storage
  • 3.3.4 Renewable Energy Generation
  • 3.3.5 Main Grid
  • 3.4 Gas Emission
  • 3.4.1 Gas Emission from Ships
  • 3.4.2 Gas Emission from Ports
  • 3.5 Reliability Under Multiple Failures
  • 3.5.1 Multiple Failures in Ships
  • 3.5.2 Multiple Failures in Ports
  • 3.5.3 Reliability Indexes
  • 3.6 Lifecycle Cost
  • 3.6.1 Fuel Cell Lifetime Degradation Model.
  • 3.6.2 Energy Storage Lifetime Degradation Model
  • 3.7 Quality of Service
  • 3.7.1 Comfort Level of Passengers
  • 3.7.2 Satisfaction Degree of Berthed-in Ships
  • References
  • 4 Formulation and Solution of Maritime Grids Optimization
  • 4.1 Synthesis-Design-Operation (SDO) Optimization
  • 4.2 Coordination Between Maritime Grids
  • 4.3 Topologies of Maritime Grids
  • 4.3.1 Topologies of Ship Power Systems
  • 4.3.2 Topologies of Seaport Microgrids
  • 4.3.3 Topologies of Other Maritime Grids
  • 4.4 Synthesis-Design-Operation Optimization of Maritime Grids
  • 4.4.1 Synthesis Optimization for Maritime Grids
  • 4.4.2 Design and Operation Optimization for Maritime Grids
  • 4.5 Formulation and Solution of SDO Optimization
  • 4.5.1 The Compact Form of SDO Optimization
  • 4.5.2 Classification of the Solution Method
  • 4.5.3 Decomposition-Based Solution Method
  • References
  • 5 Energy Management of Maritime Grids Under Uncertainties
  • 5.1 Introductions of Uncertainties in Maritime Grids
  • 5.1.1 Different Types of Uncertainties
  • 5.1.2 Effects of Electrification for Uncertainties
  • 5.2 Navigation Uncertainties
  • 5.2.1 Uncertain Wave and Wind
  • 5.2.2 Adverse Weather Conditions
  • 5.2.3 Calls-for-Service Uncertainties
  • 5.3 Energy Source Uncertainties
  • 5.3.1 Renewable Energy Uncertainties
  • 5.3.2 Main Grid Uncertainties
  • 5.3.3 Equipment Uncertainties
  • 5.4 Data-Driven Optimization with Uncertainties
  • 5.4.1 General Model
  • 5.4.2 Data-Driven Stochastic Modeling
  • 5.4.3 Data-Driven Robust Modeling
  • 5.5 Typical Problems
  • 5.5.1 Energy Management for Photovoltaic (PV) Uncertainties in AES
  • 5.5.2 Energy Management for Navigation Uncertainties in AES
  • References
  • 6 Energy Storage Management of Maritime Grids
  • 6.1 Introduction to Energy Storage Technologies
  • 6.2 Characteristics of Different Energy Storage Technologies.
  • 6.2.1 Classifications of Current Energy Storage Technologies
  • 6.2.2 Battery
  • 6.2.3 Flywheel
  • 6.2.4 Ultracapacitor
  • 6.3 Applications of Energy Storage in Maritime Grids
  • 6.3.1 Roles of Energy Storage in Maritime Grids
  • 6.3.2 Navigation Uncertainties and Demand Response
  • 6.3.3 Renewable Energy Integration
  • 6.3.4 Energy Recovery for Equipment
  • 6.4 Typical Problems
  • 6.4.1 Energy Storage Management in AES for Navigation Uncertainties
  • 6.4.2 Energy Storage Management in AES for Extending Lifetime
  • References
  • 7 Multi-energy Management of Maritime Grids
  • 7.1 Concept of Multi-energy Management
  • 7.1.1 Motivation and Background
  • 7.1.2 Classification of Multi-energy Systems
  • 7.2 Future Multi-energy Maritime Grids
  • 7.2.1 Multi-energy Nature of Maritime Grids
  • 7.2.2 Multi-energy Cruise Ships
  • 7.2.3 Multi-energy Seaport
  • 7.3 General Model and Solving Method
  • 7.3.1 Compact Form Model
  • 7.3.2 A Decomposed Solving Method
  • 7.4 Typical Problems
  • 7.4.1 Multi-energy Management for Cruise Ships
  • 7.4.2 Multi-energy Management for Seaport Microgrids
  • References
  • 8 Multi-source Energy Management of Maritime Grids
  • 8.1 Multiples Sources in Maritime Grids
  • 8.1.1 Main Grid
  • 8.1.2 Main Engines
  • 8.1.3 Battery and Fuel Cell
  • 8.1.4 Renewable Energy and Demand Response
  • 8.2 Coordination Between Multiple Sources in Maritime Grids
  • 8.3 Some Representative Coordination Cases
  • 8.3.1 Main Engine-Battery Coordination in AES
  • 8.3.2 Main Engine-Fuel Cell Coordination in AES
  • 8.3.3 Demand Response Coordination Within Seaports
  • References
  • 9 The Ways Ahead
  • 9.1 Future Maritime Grids
  • 9.2 Data-Driven Technologies
  • 9.2.1 Navigation Uncertainty Forecasting
  • 9.2.2 States of Battery Energy Storage
  • 9.2.3 Fuel Cell Degradation
  • 9.2.4 Renewable Energy Forecasting
  • 9.3 Siting and Sizing Problems.
  • 9.3.1 Energy Storage Integration
  • 9.3.2 Fuel Cell Integration
  • 9.4 Energy Management
  • 9.5 Summary
  • References.