Optimization-Based Energy Management for Multi-Energy Maritime Grids.

Saved in:
Bibliographic Details
Superior document:Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ; v.11
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series
Online Access:
Physical Description:1 online resource (211 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006566902
ctrlnum (MiAaPQ)5006566902
(Au-PeEL)EBL6566902
(OCoLC)1248727342
collection bib_alma
record_format marc
spelling Fang, Sidun.
Optimization-Based Energy Management for Multi-Energy Maritime Grids.
1st ed.
Singapore : Springer Singapore Pte. Limited, 2021.
©2021.
1 online resource (211 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ; v.11
Intro -- Preface -- Acknowledgments -- Contents -- About the Authors -- Abbreviations -- 1 Introduction to the Multi-energy Maritime Grids -- 1.1 Background and Motivation -- 1.1.1 Economy Growth and the Demand for Maritime Transport -- 1.1.2 Ship Supply Capacity and Market Structure -- 1.1.3 Shipping Services and Ports -- 1.1.4 The Path to the Green Shipping -- 1.2 Promising Technologies -- 1.2.1 Overview -- 1.2.2 Selected Technical Designs for Energy Efficiency Improvement -- 1.2.3 Selected Alternative Fuels or Energy Sources -- 1.3 Next-Generation Maritime Grids -- 1.3.1 Shipboard Microgrid -- 1.3.2 Seaport Microgrid -- 1.3.3 Coordination Between Shipboard and Seaport Microgrids -- 1.4 Summary -- References -- 2 Basics for Optimization Problem -- 2.1 Overview of Optimization Problems -- 2.1.1 General Forms -- 2.1.2 Classifications of Optimization Problems -- 2.2 Optimization Problems with Uncertainties -- 2.2.1 Stochastic Optimization -- 2.2.2 Robust Optimization -- 2.2.3 Interval Optimization -- 2.3 Convex Optimization -- 2.3.1 Semi-definite Programming -- 2.3.2 Second-Order Cone Programming -- 2.4 Optimization Frameworks -- 2.4.1 Two-Stage Optimization -- 2.4.2 Bi-level Optimization -- 2.5 Summary -- References -- 3 Mathematical Formulation of Management Targets -- 3.1 Overview of the Management Tasks -- 3.2 Navigation Tasks -- 3.2.1 Typical Cases -- 3.2.2 Mathematical Model -- 3.3 Energy Consumption -- 3.3.1 Diesel Engines/Generators -- 3.3.2 Fuel Cell -- 3.3.3 Energy Storage -- 3.3.4 Renewable Energy Generation -- 3.3.5 Main Grid -- 3.4 Gas Emission -- 3.4.1 Gas Emission from Ships -- 3.4.2 Gas Emission from Ports -- 3.5 Reliability Under Multiple Failures -- 3.5.1 Multiple Failures in Ships -- 3.5.2 Multiple Failures in Ports -- 3.5.3 Reliability Indexes -- 3.6 Lifecycle Cost -- 3.6.1 Fuel Cell Lifetime Degradation Model.
3.6.2 Energy Storage Lifetime Degradation Model -- 3.7 Quality of Service -- 3.7.1 Comfort Level of Passengers -- 3.7.2 Satisfaction Degree of Berthed-in Ships -- References -- 4 Formulation and Solution of Maritime Grids Optimization -- 4.1 Synthesis-Design-Operation (SDO) Optimization -- 4.2 Coordination Between Maritime Grids -- 4.3 Topologies of Maritime Grids -- 4.3.1 Topologies of Ship Power Systems -- 4.3.2 Topologies of Seaport Microgrids -- 4.3.3 Topologies of Other Maritime Grids -- 4.4 Synthesis-Design-Operation Optimization of Maritime Grids -- 4.4.1 Synthesis Optimization for Maritime Grids -- 4.4.2 Design and Operation Optimization for Maritime Grids -- 4.5 Formulation and Solution of SDO Optimization -- 4.5.1 The Compact Form of SDO Optimization -- 4.5.2 Classification of the Solution Method -- 4.5.3 Decomposition-Based Solution Method -- References -- 5 Energy Management of Maritime Grids Under Uncertainties -- 5.1 Introductions of Uncertainties in Maritime Grids -- 5.1.1 Different Types of Uncertainties -- 5.1.2 Effects of Electrification for Uncertainties -- 5.2 Navigation Uncertainties -- 5.2.1 Uncertain Wave and Wind -- 5.2.2 Adverse Weather Conditions -- 5.2.3 Calls-for-Service Uncertainties -- 5.3 Energy Source Uncertainties -- 5.3.1 Renewable Energy Uncertainties -- 5.3.2 Main Grid Uncertainties -- 5.3.3 Equipment Uncertainties -- 5.4 Data-Driven Optimization with Uncertainties -- 5.4.1 General Model -- 5.4.2 Data-Driven Stochastic Modeling -- 5.4.3 Data-Driven Robust Modeling -- 5.5 Typical Problems -- 5.5.1 Energy Management for Photovoltaic (PV) Uncertainties in AES -- 5.5.2 Energy Management for Navigation Uncertainties in AES -- References -- 6 Energy Storage Management of Maritime Grids -- 6.1 Introduction to Energy Storage Technologies -- 6.2 Characteristics of Different Energy Storage Technologies.
6.2.1 Classifications of Current Energy Storage Technologies -- 6.2.2 Battery -- 6.2.3 Flywheel -- 6.2.4 Ultracapacitor -- 6.3 Applications of Energy Storage in Maritime Grids -- 6.3.1 Roles of Energy Storage in Maritime Grids -- 6.3.2 Navigation Uncertainties and Demand Response -- 6.3.3 Renewable Energy Integration -- 6.3.4 Energy Recovery for Equipment -- 6.4 Typical Problems -- 6.4.1 Energy Storage Management in AES for Navigation Uncertainties -- 6.4.2 Energy Storage Management in AES for Extending Lifetime -- References -- 7 Multi-energy Management of Maritime Grids -- 7.1 Concept of Multi-energy Management -- 7.1.1 Motivation and Background -- 7.1.2 Classification of Multi-energy Systems -- 7.2 Future Multi-energy Maritime Grids -- 7.2.1 Multi-energy Nature of Maritime Grids -- 7.2.2 Multi-energy Cruise Ships -- 7.2.3 Multi-energy Seaport -- 7.3 General Model and Solving Method -- 7.3.1 Compact Form Model -- 7.3.2 A Decomposed Solving Method -- 7.4 Typical Problems -- 7.4.1 Multi-energy Management for Cruise Ships -- 7.4.2 Multi-energy Management for Seaport Microgrids -- References -- 8 Multi-source Energy Management of Maritime Grids -- 8.1 Multiples Sources in Maritime Grids -- 8.1.1 Main Grid -- 8.1.2 Main Engines -- 8.1.3 Battery and Fuel Cell -- 8.1.4 Renewable Energy and Demand Response -- 8.2 Coordination Between Multiple Sources in Maritime Grids -- 8.3 Some Representative Coordination Cases -- 8.3.1 Main Engine-Battery Coordination in AES -- 8.3.2 Main Engine-Fuel Cell Coordination in AES -- 8.3.3 Demand Response Coordination Within Seaports -- References -- 9 The Ways Ahead -- 9.1 Future Maritime Grids -- 9.2 Data-Driven Technologies -- 9.2.1 Navigation Uncertainty Forecasting -- 9.2.2 States of Battery Energy Storage -- 9.2.3 Fuel Cell Degradation -- 9.2.4 Renewable Energy Forecasting -- 9.3 Siting and Sizing Problems.
9.3.1 Energy Storage Integration -- 9.3.2 Fuel Cell Integration -- 9.4 Energy Management -- 9.5 Summary -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Wang, Hongdong.
Print version: Fang, Sidun Optimization-Based Energy Management for Multi-Energy Maritime Grids Singapore : Springer Singapore Pte. Limited,c2021 9789813367333
ProQuest (Firm)
Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6566902 Click to View
language English
format eBook
author Fang, Sidun.
spellingShingle Fang, Sidun.
Optimization-Based Energy Management for Multi-Energy Maritime Grids.
Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ;
Intro -- Preface -- Acknowledgments -- Contents -- About the Authors -- Abbreviations -- 1 Introduction to the Multi-energy Maritime Grids -- 1.1 Background and Motivation -- 1.1.1 Economy Growth and the Demand for Maritime Transport -- 1.1.2 Ship Supply Capacity and Market Structure -- 1.1.3 Shipping Services and Ports -- 1.1.4 The Path to the Green Shipping -- 1.2 Promising Technologies -- 1.2.1 Overview -- 1.2.2 Selected Technical Designs for Energy Efficiency Improvement -- 1.2.3 Selected Alternative Fuels or Energy Sources -- 1.3 Next-Generation Maritime Grids -- 1.3.1 Shipboard Microgrid -- 1.3.2 Seaport Microgrid -- 1.3.3 Coordination Between Shipboard and Seaport Microgrids -- 1.4 Summary -- References -- 2 Basics for Optimization Problem -- 2.1 Overview of Optimization Problems -- 2.1.1 General Forms -- 2.1.2 Classifications of Optimization Problems -- 2.2 Optimization Problems with Uncertainties -- 2.2.1 Stochastic Optimization -- 2.2.2 Robust Optimization -- 2.2.3 Interval Optimization -- 2.3 Convex Optimization -- 2.3.1 Semi-definite Programming -- 2.3.2 Second-Order Cone Programming -- 2.4 Optimization Frameworks -- 2.4.1 Two-Stage Optimization -- 2.4.2 Bi-level Optimization -- 2.5 Summary -- References -- 3 Mathematical Formulation of Management Targets -- 3.1 Overview of the Management Tasks -- 3.2 Navigation Tasks -- 3.2.1 Typical Cases -- 3.2.2 Mathematical Model -- 3.3 Energy Consumption -- 3.3.1 Diesel Engines/Generators -- 3.3.2 Fuel Cell -- 3.3.3 Energy Storage -- 3.3.4 Renewable Energy Generation -- 3.3.5 Main Grid -- 3.4 Gas Emission -- 3.4.1 Gas Emission from Ships -- 3.4.2 Gas Emission from Ports -- 3.5 Reliability Under Multiple Failures -- 3.5.1 Multiple Failures in Ships -- 3.5.2 Multiple Failures in Ports -- 3.5.3 Reliability Indexes -- 3.6 Lifecycle Cost -- 3.6.1 Fuel Cell Lifetime Degradation Model.
3.6.2 Energy Storage Lifetime Degradation Model -- 3.7 Quality of Service -- 3.7.1 Comfort Level of Passengers -- 3.7.2 Satisfaction Degree of Berthed-in Ships -- References -- 4 Formulation and Solution of Maritime Grids Optimization -- 4.1 Synthesis-Design-Operation (SDO) Optimization -- 4.2 Coordination Between Maritime Grids -- 4.3 Topologies of Maritime Grids -- 4.3.1 Topologies of Ship Power Systems -- 4.3.2 Topologies of Seaport Microgrids -- 4.3.3 Topologies of Other Maritime Grids -- 4.4 Synthesis-Design-Operation Optimization of Maritime Grids -- 4.4.1 Synthesis Optimization for Maritime Grids -- 4.4.2 Design and Operation Optimization for Maritime Grids -- 4.5 Formulation and Solution of SDO Optimization -- 4.5.1 The Compact Form of SDO Optimization -- 4.5.2 Classification of the Solution Method -- 4.5.3 Decomposition-Based Solution Method -- References -- 5 Energy Management of Maritime Grids Under Uncertainties -- 5.1 Introductions of Uncertainties in Maritime Grids -- 5.1.1 Different Types of Uncertainties -- 5.1.2 Effects of Electrification for Uncertainties -- 5.2 Navigation Uncertainties -- 5.2.1 Uncertain Wave and Wind -- 5.2.2 Adverse Weather Conditions -- 5.2.3 Calls-for-Service Uncertainties -- 5.3 Energy Source Uncertainties -- 5.3.1 Renewable Energy Uncertainties -- 5.3.2 Main Grid Uncertainties -- 5.3.3 Equipment Uncertainties -- 5.4 Data-Driven Optimization with Uncertainties -- 5.4.1 General Model -- 5.4.2 Data-Driven Stochastic Modeling -- 5.4.3 Data-Driven Robust Modeling -- 5.5 Typical Problems -- 5.5.1 Energy Management for Photovoltaic (PV) Uncertainties in AES -- 5.5.2 Energy Management for Navigation Uncertainties in AES -- References -- 6 Energy Storage Management of Maritime Grids -- 6.1 Introduction to Energy Storage Technologies -- 6.2 Characteristics of Different Energy Storage Technologies.
6.2.1 Classifications of Current Energy Storage Technologies -- 6.2.2 Battery -- 6.2.3 Flywheel -- 6.2.4 Ultracapacitor -- 6.3 Applications of Energy Storage in Maritime Grids -- 6.3.1 Roles of Energy Storage in Maritime Grids -- 6.3.2 Navigation Uncertainties and Demand Response -- 6.3.3 Renewable Energy Integration -- 6.3.4 Energy Recovery for Equipment -- 6.4 Typical Problems -- 6.4.1 Energy Storage Management in AES for Navigation Uncertainties -- 6.4.2 Energy Storage Management in AES for Extending Lifetime -- References -- 7 Multi-energy Management of Maritime Grids -- 7.1 Concept of Multi-energy Management -- 7.1.1 Motivation and Background -- 7.1.2 Classification of Multi-energy Systems -- 7.2 Future Multi-energy Maritime Grids -- 7.2.1 Multi-energy Nature of Maritime Grids -- 7.2.2 Multi-energy Cruise Ships -- 7.2.3 Multi-energy Seaport -- 7.3 General Model and Solving Method -- 7.3.1 Compact Form Model -- 7.3.2 A Decomposed Solving Method -- 7.4 Typical Problems -- 7.4.1 Multi-energy Management for Cruise Ships -- 7.4.2 Multi-energy Management for Seaport Microgrids -- References -- 8 Multi-source Energy Management of Maritime Grids -- 8.1 Multiples Sources in Maritime Grids -- 8.1.1 Main Grid -- 8.1.2 Main Engines -- 8.1.3 Battery and Fuel Cell -- 8.1.4 Renewable Energy and Demand Response -- 8.2 Coordination Between Multiple Sources in Maritime Grids -- 8.3 Some Representative Coordination Cases -- 8.3.1 Main Engine-Battery Coordination in AES -- 8.3.2 Main Engine-Fuel Cell Coordination in AES -- 8.3.3 Demand Response Coordination Within Seaports -- References -- 9 The Ways Ahead -- 9.1 Future Maritime Grids -- 9.2 Data-Driven Technologies -- 9.2.1 Navigation Uncertainty Forecasting -- 9.2.2 States of Battery Energy Storage -- 9.2.3 Fuel Cell Degradation -- 9.2.4 Renewable Energy Forecasting -- 9.3 Siting and Sizing Problems.
9.3.1 Energy Storage Integration -- 9.3.2 Fuel Cell Integration -- 9.4 Energy Management -- 9.5 Summary -- References.
author_facet Fang, Sidun.
Wang, Hongdong.
author_variant s f sf
author2 Wang, Hongdong.
author2_variant h w hw
author2_role TeilnehmendeR
author_sort Fang, Sidun.
title Optimization-Based Energy Management for Multi-Energy Maritime Grids.
title_full Optimization-Based Energy Management for Multi-Energy Maritime Grids.
title_fullStr Optimization-Based Energy Management for Multi-Energy Maritime Grids.
title_full_unstemmed Optimization-Based Energy Management for Multi-Energy Maritime Grids.
title_auth Optimization-Based Energy Management for Multi-Energy Maritime Grids.
title_new Optimization-Based Energy Management for Multi-Energy Maritime Grids.
title_sort optimization-based energy management for multi-energy maritime grids.
series Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ;
series2 Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ;
publisher Springer Singapore Pte. Limited,
publishDate 2021
physical 1 online resource (211 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgments -- Contents -- About the Authors -- Abbreviations -- 1 Introduction to the Multi-energy Maritime Grids -- 1.1 Background and Motivation -- 1.1.1 Economy Growth and the Demand for Maritime Transport -- 1.1.2 Ship Supply Capacity and Market Structure -- 1.1.3 Shipping Services and Ports -- 1.1.4 The Path to the Green Shipping -- 1.2 Promising Technologies -- 1.2.1 Overview -- 1.2.2 Selected Technical Designs for Energy Efficiency Improvement -- 1.2.3 Selected Alternative Fuels or Energy Sources -- 1.3 Next-Generation Maritime Grids -- 1.3.1 Shipboard Microgrid -- 1.3.2 Seaport Microgrid -- 1.3.3 Coordination Between Shipboard and Seaport Microgrids -- 1.4 Summary -- References -- 2 Basics for Optimization Problem -- 2.1 Overview of Optimization Problems -- 2.1.1 General Forms -- 2.1.2 Classifications of Optimization Problems -- 2.2 Optimization Problems with Uncertainties -- 2.2.1 Stochastic Optimization -- 2.2.2 Robust Optimization -- 2.2.3 Interval Optimization -- 2.3 Convex Optimization -- 2.3.1 Semi-definite Programming -- 2.3.2 Second-Order Cone Programming -- 2.4 Optimization Frameworks -- 2.4.1 Two-Stage Optimization -- 2.4.2 Bi-level Optimization -- 2.5 Summary -- References -- 3 Mathematical Formulation of Management Targets -- 3.1 Overview of the Management Tasks -- 3.2 Navigation Tasks -- 3.2.1 Typical Cases -- 3.2.2 Mathematical Model -- 3.3 Energy Consumption -- 3.3.1 Diesel Engines/Generators -- 3.3.2 Fuel Cell -- 3.3.3 Energy Storage -- 3.3.4 Renewable Energy Generation -- 3.3.5 Main Grid -- 3.4 Gas Emission -- 3.4.1 Gas Emission from Ships -- 3.4.2 Gas Emission from Ports -- 3.5 Reliability Under Multiple Failures -- 3.5.1 Multiple Failures in Ships -- 3.5.2 Multiple Failures in Ports -- 3.5.3 Reliability Indexes -- 3.6 Lifecycle Cost -- 3.6.1 Fuel Cell Lifetime Degradation Model.
3.6.2 Energy Storage Lifetime Degradation Model -- 3.7 Quality of Service -- 3.7.1 Comfort Level of Passengers -- 3.7.2 Satisfaction Degree of Berthed-in Ships -- References -- 4 Formulation and Solution of Maritime Grids Optimization -- 4.1 Synthesis-Design-Operation (SDO) Optimization -- 4.2 Coordination Between Maritime Grids -- 4.3 Topologies of Maritime Grids -- 4.3.1 Topologies of Ship Power Systems -- 4.3.2 Topologies of Seaport Microgrids -- 4.3.3 Topologies of Other Maritime Grids -- 4.4 Synthesis-Design-Operation Optimization of Maritime Grids -- 4.4.1 Synthesis Optimization for Maritime Grids -- 4.4.2 Design and Operation Optimization for Maritime Grids -- 4.5 Formulation and Solution of SDO Optimization -- 4.5.1 The Compact Form of SDO Optimization -- 4.5.2 Classification of the Solution Method -- 4.5.3 Decomposition-Based Solution Method -- References -- 5 Energy Management of Maritime Grids Under Uncertainties -- 5.1 Introductions of Uncertainties in Maritime Grids -- 5.1.1 Different Types of Uncertainties -- 5.1.2 Effects of Electrification for Uncertainties -- 5.2 Navigation Uncertainties -- 5.2.1 Uncertain Wave and Wind -- 5.2.2 Adverse Weather Conditions -- 5.2.3 Calls-for-Service Uncertainties -- 5.3 Energy Source Uncertainties -- 5.3.1 Renewable Energy Uncertainties -- 5.3.2 Main Grid Uncertainties -- 5.3.3 Equipment Uncertainties -- 5.4 Data-Driven Optimization with Uncertainties -- 5.4.1 General Model -- 5.4.2 Data-Driven Stochastic Modeling -- 5.4.3 Data-Driven Robust Modeling -- 5.5 Typical Problems -- 5.5.1 Energy Management for Photovoltaic (PV) Uncertainties in AES -- 5.5.2 Energy Management for Navigation Uncertainties in AES -- References -- 6 Energy Storage Management of Maritime Grids -- 6.1 Introduction to Energy Storage Technologies -- 6.2 Characteristics of Different Energy Storage Technologies.
6.2.1 Classifications of Current Energy Storage Technologies -- 6.2.2 Battery -- 6.2.3 Flywheel -- 6.2.4 Ultracapacitor -- 6.3 Applications of Energy Storage in Maritime Grids -- 6.3.1 Roles of Energy Storage in Maritime Grids -- 6.3.2 Navigation Uncertainties and Demand Response -- 6.3.3 Renewable Energy Integration -- 6.3.4 Energy Recovery for Equipment -- 6.4 Typical Problems -- 6.4.1 Energy Storage Management in AES for Navigation Uncertainties -- 6.4.2 Energy Storage Management in AES for Extending Lifetime -- References -- 7 Multi-energy Management of Maritime Grids -- 7.1 Concept of Multi-energy Management -- 7.1.1 Motivation and Background -- 7.1.2 Classification of Multi-energy Systems -- 7.2 Future Multi-energy Maritime Grids -- 7.2.1 Multi-energy Nature of Maritime Grids -- 7.2.2 Multi-energy Cruise Ships -- 7.2.3 Multi-energy Seaport -- 7.3 General Model and Solving Method -- 7.3.1 Compact Form Model -- 7.3.2 A Decomposed Solving Method -- 7.4 Typical Problems -- 7.4.1 Multi-energy Management for Cruise Ships -- 7.4.2 Multi-energy Management for Seaport Microgrids -- References -- 8 Multi-source Energy Management of Maritime Grids -- 8.1 Multiples Sources in Maritime Grids -- 8.1.1 Main Grid -- 8.1.2 Main Engines -- 8.1.3 Battery and Fuel Cell -- 8.1.4 Renewable Energy and Demand Response -- 8.2 Coordination Between Multiple Sources in Maritime Grids -- 8.3 Some Representative Coordination Cases -- 8.3.1 Main Engine-Battery Coordination in AES -- 8.3.2 Main Engine-Fuel Cell Coordination in AES -- 8.3.3 Demand Response Coordination Within Seaports -- References -- 9 The Ways Ahead -- 9.1 Future Maritime Grids -- 9.2 Data-Driven Technologies -- 9.2.1 Navigation Uncertainty Forecasting -- 9.2.2 States of Battery Energy Storage -- 9.2.3 Fuel Cell Degradation -- 9.2.4 Renewable Energy Forecasting -- 9.3 Siting and Sizing Problems.
9.3.1 Energy Storage Integration -- 9.3.2 Fuel Cell Integration -- 9.4 Energy Management -- 9.5 Summary -- References.
isbn 9789813367340
9789813367333
callnumber-first T - Technology
callnumber-subject TC - Hydraulic and Ocean Engineering
callnumber-label TC1665-1670
callnumber-sort TC 41665 41670
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6566902
illustrated Not Illustrated
oclc_num 1248727342
work_keys_str_mv AT fangsidun optimizationbasedenergymanagementformultienergymaritimegrids
AT wanghongdong optimizationbasedenergymanagementformultienergymaritimegrids
status_str n
ids_txt_mv (MiAaPQ)5006566902
(Au-PeEL)EBL6566902
(OCoLC)1248727342
carrierType_str_mv cr
hierarchy_parent_title Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ; v.11
is_hierarchy_title Optimization-Based Energy Management for Multi-Energy Maritime Grids.
container_title Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ; v.11
author2_original_writing_str_mv noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331061028454400
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07973nam a22004453i 4500</leader><controlfield tag="001">5006566902</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073840.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813367340</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789813367333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006566902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6566902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1248727342</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TC1665-1670</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fang, Sidun.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization-Based Energy Management for Multi-Energy Maritime Grids.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer Singapore Pte. Limited,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (211 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ;</subfield><subfield code="v">v.11</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgments -- Contents -- About the Authors -- Abbreviations -- 1 Introduction to the Multi-energy Maritime Grids -- 1.1 Background and Motivation -- 1.1.1 Economy Growth and the Demand for Maritime Transport -- 1.1.2 Ship Supply Capacity and Market Structure -- 1.1.3 Shipping Services and Ports -- 1.1.4 The Path to the Green Shipping -- 1.2 Promising Technologies -- 1.2.1 Overview -- 1.2.2 Selected Technical Designs for Energy Efficiency Improvement -- 1.2.3 Selected Alternative Fuels or Energy Sources -- 1.3 Next-Generation Maritime Grids -- 1.3.1 Shipboard Microgrid -- 1.3.2 Seaport Microgrid -- 1.3.3 Coordination Between Shipboard and Seaport Microgrids -- 1.4 Summary -- References -- 2 Basics for Optimization Problem -- 2.1 Overview of Optimization Problems -- 2.1.1 General Forms -- 2.1.2 Classifications of Optimization Problems -- 2.2 Optimization Problems with Uncertainties -- 2.2.1 Stochastic Optimization -- 2.2.2 Robust Optimization -- 2.2.3 Interval Optimization -- 2.3 Convex Optimization -- 2.3.1 Semi-definite Programming -- 2.3.2 Second-Order Cone Programming -- 2.4 Optimization Frameworks -- 2.4.1 Two-Stage Optimization -- 2.4.2 Bi-level Optimization -- 2.5 Summary -- References -- 3 Mathematical Formulation of Management Targets -- 3.1 Overview of the Management Tasks -- 3.2 Navigation Tasks -- 3.2.1 Typical Cases -- 3.2.2 Mathematical Model -- 3.3 Energy Consumption -- 3.3.1 Diesel Engines/Generators -- 3.3.2 Fuel Cell -- 3.3.3 Energy Storage -- 3.3.4 Renewable Energy Generation -- 3.3.5 Main Grid -- 3.4 Gas Emission -- 3.4.1 Gas Emission from Ships -- 3.4.2 Gas Emission from Ports -- 3.5 Reliability Under Multiple Failures -- 3.5.1 Multiple Failures in Ships -- 3.5.2 Multiple Failures in Ports -- 3.5.3 Reliability Indexes -- 3.6 Lifecycle Cost -- 3.6.1 Fuel Cell Lifetime Degradation Model.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6.2 Energy Storage Lifetime Degradation Model -- 3.7 Quality of Service -- 3.7.1 Comfort Level of Passengers -- 3.7.2 Satisfaction Degree of Berthed-in Ships -- References -- 4 Formulation and Solution of Maritime Grids Optimization -- 4.1 Synthesis-Design-Operation (SDO) Optimization -- 4.2 Coordination Between Maritime Grids -- 4.3 Topologies of Maritime Grids -- 4.3.1 Topologies of Ship Power Systems -- 4.3.2 Topologies of Seaport Microgrids -- 4.3.3 Topologies of Other Maritime Grids -- 4.4 Synthesis-Design-Operation Optimization of Maritime Grids -- 4.4.1 Synthesis Optimization for Maritime Grids -- 4.4.2 Design and Operation Optimization for Maritime Grids -- 4.5 Formulation and Solution of SDO Optimization -- 4.5.1 The Compact Form of SDO Optimization -- 4.5.2 Classification of the Solution Method -- 4.5.3 Decomposition-Based Solution Method -- References -- 5 Energy Management of Maritime Grids Under Uncertainties -- 5.1 Introductions of Uncertainties in Maritime Grids -- 5.1.1 Different Types of Uncertainties -- 5.1.2 Effects of Electrification for Uncertainties -- 5.2 Navigation Uncertainties -- 5.2.1 Uncertain Wave and Wind -- 5.2.2 Adverse Weather Conditions -- 5.2.3 Calls-for-Service Uncertainties -- 5.3 Energy Source Uncertainties -- 5.3.1 Renewable Energy Uncertainties -- 5.3.2 Main Grid Uncertainties -- 5.3.3 Equipment Uncertainties -- 5.4 Data-Driven Optimization with Uncertainties -- 5.4.1 General Model -- 5.4.2 Data-Driven Stochastic Modeling -- 5.4.3 Data-Driven Robust Modeling -- 5.5 Typical Problems -- 5.5.1 Energy Management for Photovoltaic (PV) Uncertainties in AES -- 5.5.2 Energy Management for Navigation Uncertainties in AES -- References -- 6 Energy Storage Management of Maritime Grids -- 6.1 Introduction to Energy Storage Technologies -- 6.2 Characteristics of Different Energy Storage Technologies.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.1 Classifications of Current Energy Storage Technologies -- 6.2.2 Battery -- 6.2.3 Flywheel -- 6.2.4 Ultracapacitor -- 6.3 Applications of Energy Storage in Maritime Grids -- 6.3.1 Roles of Energy Storage in Maritime Grids -- 6.3.2 Navigation Uncertainties and Demand Response -- 6.3.3 Renewable Energy Integration -- 6.3.4 Energy Recovery for Equipment -- 6.4 Typical Problems -- 6.4.1 Energy Storage Management in AES for Navigation Uncertainties -- 6.4.2 Energy Storage Management in AES for Extending Lifetime -- References -- 7 Multi-energy Management of Maritime Grids -- 7.1 Concept of Multi-energy Management -- 7.1.1 Motivation and Background -- 7.1.2 Classification of Multi-energy Systems -- 7.2 Future Multi-energy Maritime Grids -- 7.2.1 Multi-energy Nature of Maritime Grids -- 7.2.2 Multi-energy Cruise Ships -- 7.2.3 Multi-energy Seaport -- 7.3 General Model and Solving Method -- 7.3.1 Compact Form Model -- 7.3.2 A Decomposed Solving Method -- 7.4 Typical Problems -- 7.4.1 Multi-energy Management for Cruise Ships -- 7.4.2 Multi-energy Management for Seaport Microgrids -- References -- 8 Multi-source Energy Management of Maritime Grids -- 8.1 Multiples Sources in Maritime Grids -- 8.1.1 Main Grid -- 8.1.2 Main Engines -- 8.1.3 Battery and Fuel Cell -- 8.1.4 Renewable Energy and Demand Response -- 8.2 Coordination Between Multiple Sources in Maritime Grids -- 8.3 Some Representative Coordination Cases -- 8.3.1 Main Engine-Battery Coordination in AES -- 8.3.2 Main Engine-Fuel Cell Coordination in AES -- 8.3.3 Demand Response Coordination Within Seaports -- References -- 9 The Ways Ahead -- 9.1 Future Maritime Grids -- 9.2 Data-Driven Technologies -- 9.2.1 Navigation Uncertainty Forecasting -- 9.2.2 States of Battery Energy Storage -- 9.2.3 Fuel Cell Degradation -- 9.2.4 Renewable Energy Forecasting -- 9.3 Siting and Sizing Problems.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.3.1 Energy Storage Integration -- 9.3.2 Fuel Cell Integration -- 9.4 Energy Management -- 9.5 Summary -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongdong.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Fang, Sidun</subfield><subfield code="t">Optimization-Based Energy Management for Multi-Energy Maritime Grids</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2021</subfield><subfield code="z">9789813367333</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6566902</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>