Optimization-Based Energy Management for Multi-Energy Maritime Grids.

Saved in:
Bibliographic Details
Superior document:Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ; v.11
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series
Online Access:
Physical Description:1 online resource (211 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 07973nam a22004453i 4500
001 5006566902
003 MiAaPQ
005 20240229073840.0
006 m o d |
007 cr cnu||||||||
008 240229s2021 xx o ||||0 eng d
020 |a 9789813367340  |q (electronic bk.) 
020 |z 9789813367333 
035 |a (MiAaPQ)5006566902 
035 |a (Au-PeEL)EBL6566902 
035 |a (OCoLC)1248727342 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a TC1665-1670 
100 1 |a Fang, Sidun. 
245 1 0 |a Optimization-Based Energy Management for Multi-Energy Maritime Grids. 
250 |a 1st ed. 
264 1 |a Singapore :  |b Springer Singapore Pte. Limited,  |c 2021. 
264 4 |c ©2021. 
300 |a 1 online resource (211 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series ;  |v v.11 
505 0 |a Intro -- Preface -- Acknowledgments -- Contents -- About the Authors -- Abbreviations -- 1 Introduction to the Multi-energy Maritime Grids -- 1.1 Background and Motivation -- 1.1.1 Economy Growth and the Demand for Maritime Transport -- 1.1.2 Ship Supply Capacity and Market Structure -- 1.1.3 Shipping Services and Ports -- 1.1.4 The Path to the Green Shipping -- 1.2 Promising Technologies -- 1.2.1 Overview -- 1.2.2 Selected Technical Designs for Energy Efficiency Improvement -- 1.2.3 Selected Alternative Fuels or Energy Sources -- 1.3 Next-Generation Maritime Grids -- 1.3.1 Shipboard Microgrid -- 1.3.2 Seaport Microgrid -- 1.3.3 Coordination Between Shipboard and Seaport Microgrids -- 1.4 Summary -- References -- 2 Basics for Optimization Problem -- 2.1 Overview of Optimization Problems -- 2.1.1 General Forms -- 2.1.2 Classifications of Optimization Problems -- 2.2 Optimization Problems with Uncertainties -- 2.2.1 Stochastic Optimization -- 2.2.2 Robust Optimization -- 2.2.3 Interval Optimization -- 2.3 Convex Optimization -- 2.3.1 Semi-definite Programming -- 2.3.2 Second-Order Cone Programming -- 2.4 Optimization Frameworks -- 2.4.1 Two-Stage Optimization -- 2.4.2 Bi-level Optimization -- 2.5 Summary -- References -- 3 Mathematical Formulation of Management Targets -- 3.1 Overview of the Management Tasks -- 3.2 Navigation Tasks -- 3.2.1 Typical Cases -- 3.2.2 Mathematical Model -- 3.3 Energy Consumption -- 3.3.1 Diesel Engines/Generators -- 3.3.2 Fuel Cell -- 3.3.3 Energy Storage -- 3.3.4 Renewable Energy Generation -- 3.3.5 Main Grid -- 3.4 Gas Emission -- 3.4.1 Gas Emission from Ships -- 3.4.2 Gas Emission from Ports -- 3.5 Reliability Under Multiple Failures -- 3.5.1 Multiple Failures in Ships -- 3.5.2 Multiple Failures in Ports -- 3.5.3 Reliability Indexes -- 3.6 Lifecycle Cost -- 3.6.1 Fuel Cell Lifetime Degradation Model. 
505 8 |a 3.6.2 Energy Storage Lifetime Degradation Model -- 3.7 Quality of Service -- 3.7.1 Comfort Level of Passengers -- 3.7.2 Satisfaction Degree of Berthed-in Ships -- References -- 4 Formulation and Solution of Maritime Grids Optimization -- 4.1 Synthesis-Design-Operation (SDO) Optimization -- 4.2 Coordination Between Maritime Grids -- 4.3 Topologies of Maritime Grids -- 4.3.1 Topologies of Ship Power Systems -- 4.3.2 Topologies of Seaport Microgrids -- 4.3.3 Topologies of Other Maritime Grids -- 4.4 Synthesis-Design-Operation Optimization of Maritime Grids -- 4.4.1 Synthesis Optimization for Maritime Grids -- 4.4.2 Design and Operation Optimization for Maritime Grids -- 4.5 Formulation and Solution of SDO Optimization -- 4.5.1 The Compact Form of SDO Optimization -- 4.5.2 Classification of the Solution Method -- 4.5.3 Decomposition-Based Solution Method -- References -- 5 Energy Management of Maritime Grids Under Uncertainties -- 5.1 Introductions of Uncertainties in Maritime Grids -- 5.1.1 Different Types of Uncertainties -- 5.1.2 Effects of Electrification for Uncertainties -- 5.2 Navigation Uncertainties -- 5.2.1 Uncertain Wave and Wind -- 5.2.2 Adverse Weather Conditions -- 5.2.3 Calls-for-Service Uncertainties -- 5.3 Energy Source Uncertainties -- 5.3.1 Renewable Energy Uncertainties -- 5.3.2 Main Grid Uncertainties -- 5.3.3 Equipment Uncertainties -- 5.4 Data-Driven Optimization with Uncertainties -- 5.4.1 General Model -- 5.4.2 Data-Driven Stochastic Modeling -- 5.4.3 Data-Driven Robust Modeling -- 5.5 Typical Problems -- 5.5.1 Energy Management for Photovoltaic (PV) Uncertainties in AES -- 5.5.2 Energy Management for Navigation Uncertainties in AES -- References -- 6 Energy Storage Management of Maritime Grids -- 6.1 Introduction to Energy Storage Technologies -- 6.2 Characteristics of Different Energy Storage Technologies. 
505 8 |a 6.2.1 Classifications of Current Energy Storage Technologies -- 6.2.2 Battery -- 6.2.3 Flywheel -- 6.2.4 Ultracapacitor -- 6.3 Applications of Energy Storage in Maritime Grids -- 6.3.1 Roles of Energy Storage in Maritime Grids -- 6.3.2 Navigation Uncertainties and Demand Response -- 6.3.3 Renewable Energy Integration -- 6.3.4 Energy Recovery for Equipment -- 6.4 Typical Problems -- 6.4.1 Energy Storage Management in AES for Navigation Uncertainties -- 6.4.2 Energy Storage Management in AES for Extending Lifetime -- References -- 7 Multi-energy Management of Maritime Grids -- 7.1 Concept of Multi-energy Management -- 7.1.1 Motivation and Background -- 7.1.2 Classification of Multi-energy Systems -- 7.2 Future Multi-energy Maritime Grids -- 7.2.1 Multi-energy Nature of Maritime Grids -- 7.2.2 Multi-energy Cruise Ships -- 7.2.3 Multi-energy Seaport -- 7.3 General Model and Solving Method -- 7.3.1 Compact Form Model -- 7.3.2 A Decomposed Solving Method -- 7.4 Typical Problems -- 7.4.1 Multi-energy Management for Cruise Ships -- 7.4.2 Multi-energy Management for Seaport Microgrids -- References -- 8 Multi-source Energy Management of Maritime Grids -- 8.1 Multiples Sources in Maritime Grids -- 8.1.1 Main Grid -- 8.1.2 Main Engines -- 8.1.3 Battery and Fuel Cell -- 8.1.4 Renewable Energy and Demand Response -- 8.2 Coordination Between Multiple Sources in Maritime Grids -- 8.3 Some Representative Coordination Cases -- 8.3.1 Main Engine-Battery Coordination in AES -- 8.3.2 Main Engine-Fuel Cell Coordination in AES -- 8.3.3 Demand Response Coordination Within Seaports -- References -- 9 The Ways Ahead -- 9.1 Future Maritime Grids -- 9.2 Data-Driven Technologies -- 9.2.1 Navigation Uncertainty Forecasting -- 9.2.2 States of Battery Energy Storage -- 9.2.3 Fuel Cell Degradation -- 9.2.4 Renewable Energy Forecasting -- 9.3 Siting and Sizing Problems. 
505 8 |a 9.3.1 Energy Storage Integration -- 9.3.2 Fuel Cell Integration -- 9.4 Energy Management -- 9.5 Summary -- References. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Wang, Hongdong. 
776 0 8 |i Print version:  |a Fang, Sidun  |t Optimization-Based Energy Management for Multi-Energy Maritime Grids  |d Singapore : Springer Singapore Pte. Limited,c2021  |z 9789813367333 
797 2 |a ProQuest (Firm) 
830 0 |a Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6566902  |z Click to View