Improving Potassium Recommendations for Agricultural Crops.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2020.
©2021.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (466 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006425460
ctrlnum (MiAaPQ)5006425460
(Au-PeEL)EBL6425460
(OCoLC)1231606923
collection bib_alma
record_format marc
spelling Murrell, T. Scott.
Improving Potassium Recommendations for Agricultural Crops.
1st ed.
Cham : Springer International Publishing AG, 2020.
©2021.
1 online resource (466 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Foreword -- Acknowledgments -- Contents -- Editors and Contributors -- Abbreviations -- Chapter 1: The Potassium Cycle and Its Relationship to Recommendation Development -- 1.1 Overview of the Potassium Cycle -- 1.2 Philosophy of a Potassium Recommendation -- 1.3 Challenges with Common Potassium Recommendation Terminology -- 1.4 Considerations for Recommendations Derived from the Mass Balance Approach to the Potassium Cycle -- 1.4.1 Exploring and Characterizing KPlant: Understood and Easily Assessed? -- 1.4.2 Exploring and Characterizing KSoil: Was Bray Right? -- 1.4.3 Exploring and Characterizing KFert and EFert: Important but Generally Overlooked? -- 1.4.4 Potassium Recommendations Without Soil Tests -- 1.4.4.1 Recommendations Based on Nutrient Removal -- 1.4.4.2 Recommendations Based on Plant Nutrient Uptake and Yield -- 1.5 Diagnostics Development: The Undelivered Promise of ``Big Data ́́-- 1.5.1 Data Limitations: Historic and Current -- 1.6 Opportunities Moving Forward -- 1.6.1 Mechanistic Modeling -- 1.6.2 Knowledge Gaps -- 1.6.3 Tools and Strategies, Data, and e-Infrastructure -- 1.6.3.1 Underutilized Data Sources with Potential -- 1.6.3.2 FAIR Data -- 1.6.3.3 Repositories and Data Publications, Catalogues, Registries, Knowledgebases -- References -- Chapter 2: Inputs: Potassium Sources for Agricultural Systems -- 2.1 Overview of Potassium Inputs -- 2.2 Atmospheric Deposition -- 2.3 Irrigation Water -- 2.4 Runoff and Erosion -- 2.5 Seeds, Cuttings, Transplants, and Residues -- 2.6 Organic Fertilizer -- 2.7 Commercial Fertilizer -- 2.7.1 Resources and Reserves -- 2.7.2 Materials and Use -- 2.7.2.1 Potassium Chloride (MOP) -- 2.7.2.2 Potassium Sulfate (SOP) -- 2.7.2.3 Potassium Nitrate (NOP) -- 2.7.2.4 Potassium Thiosulfate (KTS) -- 2.7.2.5 Langbeinite (SOPM) -- 2.7.2.6 Polyhalite -- 2.7.2.7 Potassium Hydroxide (KOH).
2.7.2.8 Potassium Phosphate -- 2.7.2.9 Mineral/Silicate K -- 2.7.2.10 Other Potassium Sources -- 2.7.3 Forms of Potassium Fertilizer -- 2.7.3.1 Bulk Blends -- 2.7.3.2 Complex (Compound) Granules -- 2.7.3.3 Fluid Fertilizers -- 2.7.4 Potassium for Fertigation -- 2.7.5 Salt Index -- 2.7.6 Chloride Considerations -- 2.7.7 Foliar Potassium Nutrition -- 2.8 Summary -- References -- Chapter 3: Outputs: Potassium Losses from Agricultural Systems -- 3.1 Removal in Harvested Crops -- 3.1.1 Whole-Plant Removal -- 3.2 Erosion -- 3.2.1 Water Erosion -- 3.2.2 Wind Erosion -- 3.3 Leaching -- 3.4 Modeling Potassium Losses -- 3.4.1 Conceptual Model of Leaching -- 3.4.2 EPIC -- 3.4.3 KLEACH -- 3.4.4 NUTMON -- 3.4.5 SVMLEACH-NK POTATO -- 3.4.6 SWAT-K -- 3.5 Open Burning -- 3.6 Considerations for Potassium Recommendations -- 3.7 Conclusions -- References -- Chapter 4: Rhizosphere Processes and Root Traits Determining the Acquisition of Soil Potassium -- 4.1 Soil Properties and Processes Determining the Acquisition of Potassium by Plants -- 4.1.1 Potassium Mobility: Mass Flow Versus Diffusion in the Rhizosphere -- 4.1.2 Potassium Availability and Bioavailability: Exchangeable Versus Nonexchangeable Pools in the Rhizosphere -- 4.1.3 Soil Profile Distribution: Topsoil Versus Subsoil Potassium Availability and Bioavailability -- 4.2 Root Morphological Traits Determining the Acquisition of Potassium by Plants -- 4.2.1 Root System Architecture and Plasticity -- 4.2.2 Root Length and Growth -- 4.2.3 Root Hairs and Mycorrhizae -- 4.3 Root Physiological Traits Determining the Acquisition of Potassium by Plants -- 4.3.1 Traits Related to Potassium Uptake and Depletion in the Rhizosphere -- 4.3.2 Traits Related to pH Modification in the Rhizosphere -- 4.3.3 Traits Related to Exudates in the Rhizosphere -- 4.4 Summary and Conclusions -- References.
Chapter 5: Potassium Use Efficiency of Plants -- 5.1 Metrics of Potassium Use Efficiency and Their Relationships -- 5.2 Differences in Potassium Uptake and Utilization Between Plant Species -- 5.2.1 Differences in KUpE Between Plant Species -- 5.2.1.1 Kinetics of Potassium Uptake -- 5.2.1.2 Root System Investment and Architecture -- 5.2.1.3 Rhizosphere Acidification and Root Exudates -- 5.2.2 Differences in KUtE Between Plant Species -- 5.3 Differences in Potassium Uptake and Utilization Within Crop Species -- 5.3.1 Differences in KUpE Within Plant Species -- 5.3.1.1 Kinetics of Potassium Uptake -- 5.3.1.2 Root System Investment and Architecture -- 5.3.1.3 Root Exudates -- 5.3.2 Differences in KUtE Within Crop Species -- 5.3.2.1 Partitioning of Potassium Within the Cell and Its Substitution with Other Ions -- 5.3.2.2 Partitioning and Redistribution of Potassium Within the Plant -- 5.3.2.3 Partitioning of Resources into the Economic Product -- 5.4 Breeding Crops for Greater Agronomic Potassium Use Efficiency -- 5.5 Conclusions -- References -- Chapter 6: Considerations for Unharvested Plant Potassium -- 6.1 The Crop Canopy as a Source of Potassium -- 6.2 Potential of Potassium Cycling by Crops and Cover Crops -- 6.3 Synchrony of Potassium Availability in Cropping Systems -- 6.4 Residue Potassium as a Means of Reducing Potassium Losses from the System -- 6.5 Potassium from Agro-Industrial Residues -- 6.6 Fertilizer Recommendations and Potassium Cycling -- 6.6.1 Modeling Potassium Release from Residues -- 6.6.2 Implications for Timing of Soil Sampling -- 6.7 Conclusion -- References -- Chapter 7: Considering Soil Potassium Pools with Dissimilar Plant Availability -- 7.1 Introduction -- 7.2 Solution Potassium and Potassium Activity -- 7.3 Surface-Adsorbed Potassium -- 7.4 Interlayer K in Micas and Partially Weathered Micas.
7.5 Interlayer Potassium in Secondary Layer Silicates -- 7.6 Structural Potassium in Feldspar and Feldspathoids -- 7.7 Neoformed Potassium Minerals -- 7.8 Fixation and Release of Interlayer Potassium -- 7.8.1 Contractive and Expansive Forces -- 7.8.2 Factors Affecting Potassium Fixation and Release -- 7.9 Interpreting ``Exchangeable Potassium ́́-- 7.10 Mineral Transformations -- 7.10.1 Reversible Changes in Interlayer Potassium -- 7.10.2 Implications for Building and Depleting Soil Fertility -- 7.11 Short-Term Transformations in the Rhizosphere -- 7.12 Nonexchangeable Potassium as a Functional Pool -- 7.13 Classifying Soils According to Their Potassium Behavior -- 7.14 Lessons Learned from Long-Term Experiments -- 7.15 Prognosis -- References -- Chapter 8: Using Soil Tests to Evaluate Plant Availability of Potassium in Soils -- 8.1 Sample Collection and Preparation -- 8.1.1 Vertical Stratification -- 8.1.2 Spatial Heterogeneity in Response to Agronomic Management -- 8.1.3 Sample Drying and Handling -- 8.2 What Are the Forms of Potassium in Soil? -- 8.3 How Is Potassium Released from Different Solid-Phase Forms? -- 8.3.1 Potassium in Fertilizer and Crop Residues -- 8.3.2 Surface-Adsorbed (Exchangeable) Potassium -- 8.3.3 Chemical Weathering -- 8.4 How Do Soil Tests Assess Plant-Available Potassium? -- 8.4.1 Soil-Test Development -- 8.4.2 Soil Tests for Assessing Soil Solution Potassium -- 8.4.3 Soil Tests for Assessing Surface-Adsorbed Potassium -- 8.4.4 Soil Tests for Dissolving Interlayer/Structural Potassium -- 8.4.5 Soil Tests that Combine Multiple Mechanisms of Potassium Dissolution -- 8.4.6 Soil Tests for Assessing the Rate of Solution Potassium Replenishment -- 8.5 Difficulties Relating Soil Test Potassium to Crop Acquisition -- 8.5.1 Rates of Resupply to Potassium-Depleted Zones Around Active Roots.
8.5.2 Root System Architectures and Their Interaction with Soil Moisture -- 8.5.3 Variation in Root System Attributes that Allow Plants to Exploit Different Potassium Pools -- 8.5.4 Specificity of Soil Test Potassium-Crop Response Relationships and the Role of Trial Databases -- 8.6 Lessons Learned from Long-Term Experiments -- 8.7 Concluding Remarks -- References -- Chapter 9: Evaluating Plant Potassium Status -- 9.1 Visual Symptoms of Potassium Deficiency -- 9.2 Light Reflectance -- 9.3 Plant Tissue Chemical Content -- 9.3.1 Sufficiency Ranges (SR) -- 9.3.2 Diagnosis and Recommendation Integrated System (DRIS) -- 9.3.2.1 DRIS Chart -- 9.3.2.2 DRIS Indexes -- 9.3.3 The Modified DRIS System (M-DRIS) -- 9.3.4 Plant Analysis with Standardized Scores (PASS) -- 9.3.5 Compositional Nutrient Diagnosis (CND) -- 9.3.5.1 CND-clr -- 9.3.5.2 CND-ilr -- 9.3.6 Multiple Regression Approaches -- 9.3.7 Metabolite Profiles -- 9.3.8 Potassium Content in Plant Sap -- 9.4 Conclusions -- References -- Chapter 10: How Closely Is Potassium Mass Balance Related to Soil Test Changes? -- 10.1 Introduction -- 10.2 The Mass-Balance Approach -- 10.3 Temporal Nature of K Soil Test Values -- 10.4 Crop Residue Recycling in K Mass-Balance Considerations -- 10.5 Clay Chemistry and K Response -- 10.6 Relative Unresponsiveness in K Removal in Harvested Grain, Despite Wide Variability in Crop K Status and Responsiveness t... -- 10.7 Potassium Losses Due to Erosion from Wind and Water -- 10.8 Summary -- References -- Chapter 11: Assessing Potassium Mass Balances in Different Countries and Scales -- 11.1 Concepts of Soil Nutrient Balance -- 11.1.1 Potassium Removal and Use for Different Cropping Systems and Geopolitical Boundaries -- 11.1.2 Metrics for Nutrient Use Efficiency -- 11.1.3 Uncertainties in Estimating Nutrient Balances -- 11.1.4 Interpreting Nutrient Balance Information.
11.2 Australia.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Mikkelsen, Robert L.
Sulewski, Gavin.
Norton, Robert.
Thompson, Michael L.
Print version: Murrell, T. Scott Improving Potassium Recommendations for Agricultural Crops Cham : Springer International Publishing AG,c2020 9783030591960
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6425460 Click to View
language English
format eBook
author Murrell, T. Scott.
spellingShingle Murrell, T. Scott.
Improving Potassium Recommendations for Agricultural Crops.
Intro -- Foreword -- Acknowledgments -- Contents -- Editors and Contributors -- Abbreviations -- Chapter 1: The Potassium Cycle and Its Relationship to Recommendation Development -- 1.1 Overview of the Potassium Cycle -- 1.2 Philosophy of a Potassium Recommendation -- 1.3 Challenges with Common Potassium Recommendation Terminology -- 1.4 Considerations for Recommendations Derived from the Mass Balance Approach to the Potassium Cycle -- 1.4.1 Exploring and Characterizing KPlant: Understood and Easily Assessed? -- 1.4.2 Exploring and Characterizing KSoil: Was Bray Right? -- 1.4.3 Exploring and Characterizing KFert and EFert: Important but Generally Overlooked? -- 1.4.4 Potassium Recommendations Without Soil Tests -- 1.4.4.1 Recommendations Based on Nutrient Removal -- 1.4.4.2 Recommendations Based on Plant Nutrient Uptake and Yield -- 1.5 Diagnostics Development: The Undelivered Promise of ``Big Data ́́-- 1.5.1 Data Limitations: Historic and Current -- 1.6 Opportunities Moving Forward -- 1.6.1 Mechanistic Modeling -- 1.6.2 Knowledge Gaps -- 1.6.3 Tools and Strategies, Data, and e-Infrastructure -- 1.6.3.1 Underutilized Data Sources with Potential -- 1.6.3.2 FAIR Data -- 1.6.3.3 Repositories and Data Publications, Catalogues, Registries, Knowledgebases -- References -- Chapter 2: Inputs: Potassium Sources for Agricultural Systems -- 2.1 Overview of Potassium Inputs -- 2.2 Atmospheric Deposition -- 2.3 Irrigation Water -- 2.4 Runoff and Erosion -- 2.5 Seeds, Cuttings, Transplants, and Residues -- 2.6 Organic Fertilizer -- 2.7 Commercial Fertilizer -- 2.7.1 Resources and Reserves -- 2.7.2 Materials and Use -- 2.7.2.1 Potassium Chloride (MOP) -- 2.7.2.2 Potassium Sulfate (SOP) -- 2.7.2.3 Potassium Nitrate (NOP) -- 2.7.2.4 Potassium Thiosulfate (KTS) -- 2.7.2.5 Langbeinite (SOPM) -- 2.7.2.6 Polyhalite -- 2.7.2.7 Potassium Hydroxide (KOH).
2.7.2.8 Potassium Phosphate -- 2.7.2.9 Mineral/Silicate K -- 2.7.2.10 Other Potassium Sources -- 2.7.3 Forms of Potassium Fertilizer -- 2.7.3.1 Bulk Blends -- 2.7.3.2 Complex (Compound) Granules -- 2.7.3.3 Fluid Fertilizers -- 2.7.4 Potassium for Fertigation -- 2.7.5 Salt Index -- 2.7.6 Chloride Considerations -- 2.7.7 Foliar Potassium Nutrition -- 2.8 Summary -- References -- Chapter 3: Outputs: Potassium Losses from Agricultural Systems -- 3.1 Removal in Harvested Crops -- 3.1.1 Whole-Plant Removal -- 3.2 Erosion -- 3.2.1 Water Erosion -- 3.2.2 Wind Erosion -- 3.3 Leaching -- 3.4 Modeling Potassium Losses -- 3.4.1 Conceptual Model of Leaching -- 3.4.2 EPIC -- 3.4.3 KLEACH -- 3.4.4 NUTMON -- 3.4.5 SVMLEACH-NK POTATO -- 3.4.6 SWAT-K -- 3.5 Open Burning -- 3.6 Considerations for Potassium Recommendations -- 3.7 Conclusions -- References -- Chapter 4: Rhizosphere Processes and Root Traits Determining the Acquisition of Soil Potassium -- 4.1 Soil Properties and Processes Determining the Acquisition of Potassium by Plants -- 4.1.1 Potassium Mobility: Mass Flow Versus Diffusion in the Rhizosphere -- 4.1.2 Potassium Availability and Bioavailability: Exchangeable Versus Nonexchangeable Pools in the Rhizosphere -- 4.1.3 Soil Profile Distribution: Topsoil Versus Subsoil Potassium Availability and Bioavailability -- 4.2 Root Morphological Traits Determining the Acquisition of Potassium by Plants -- 4.2.1 Root System Architecture and Plasticity -- 4.2.2 Root Length and Growth -- 4.2.3 Root Hairs and Mycorrhizae -- 4.3 Root Physiological Traits Determining the Acquisition of Potassium by Plants -- 4.3.1 Traits Related to Potassium Uptake and Depletion in the Rhizosphere -- 4.3.2 Traits Related to pH Modification in the Rhizosphere -- 4.3.3 Traits Related to Exudates in the Rhizosphere -- 4.4 Summary and Conclusions -- References.
Chapter 5: Potassium Use Efficiency of Plants -- 5.1 Metrics of Potassium Use Efficiency and Their Relationships -- 5.2 Differences in Potassium Uptake and Utilization Between Plant Species -- 5.2.1 Differences in KUpE Between Plant Species -- 5.2.1.1 Kinetics of Potassium Uptake -- 5.2.1.2 Root System Investment and Architecture -- 5.2.1.3 Rhizosphere Acidification and Root Exudates -- 5.2.2 Differences in KUtE Between Plant Species -- 5.3 Differences in Potassium Uptake and Utilization Within Crop Species -- 5.3.1 Differences in KUpE Within Plant Species -- 5.3.1.1 Kinetics of Potassium Uptake -- 5.3.1.2 Root System Investment and Architecture -- 5.3.1.3 Root Exudates -- 5.3.2 Differences in KUtE Within Crop Species -- 5.3.2.1 Partitioning of Potassium Within the Cell and Its Substitution with Other Ions -- 5.3.2.2 Partitioning and Redistribution of Potassium Within the Plant -- 5.3.2.3 Partitioning of Resources into the Economic Product -- 5.4 Breeding Crops for Greater Agronomic Potassium Use Efficiency -- 5.5 Conclusions -- References -- Chapter 6: Considerations for Unharvested Plant Potassium -- 6.1 The Crop Canopy as a Source of Potassium -- 6.2 Potential of Potassium Cycling by Crops and Cover Crops -- 6.3 Synchrony of Potassium Availability in Cropping Systems -- 6.4 Residue Potassium as a Means of Reducing Potassium Losses from the System -- 6.5 Potassium from Agro-Industrial Residues -- 6.6 Fertilizer Recommendations and Potassium Cycling -- 6.6.1 Modeling Potassium Release from Residues -- 6.6.2 Implications for Timing of Soil Sampling -- 6.7 Conclusion -- References -- Chapter 7: Considering Soil Potassium Pools with Dissimilar Plant Availability -- 7.1 Introduction -- 7.2 Solution Potassium and Potassium Activity -- 7.3 Surface-Adsorbed Potassium -- 7.4 Interlayer K in Micas and Partially Weathered Micas.
7.5 Interlayer Potassium in Secondary Layer Silicates -- 7.6 Structural Potassium in Feldspar and Feldspathoids -- 7.7 Neoformed Potassium Minerals -- 7.8 Fixation and Release of Interlayer Potassium -- 7.8.1 Contractive and Expansive Forces -- 7.8.2 Factors Affecting Potassium Fixation and Release -- 7.9 Interpreting ``Exchangeable Potassium ́́-- 7.10 Mineral Transformations -- 7.10.1 Reversible Changes in Interlayer Potassium -- 7.10.2 Implications for Building and Depleting Soil Fertility -- 7.11 Short-Term Transformations in the Rhizosphere -- 7.12 Nonexchangeable Potassium as a Functional Pool -- 7.13 Classifying Soils According to Their Potassium Behavior -- 7.14 Lessons Learned from Long-Term Experiments -- 7.15 Prognosis -- References -- Chapter 8: Using Soil Tests to Evaluate Plant Availability of Potassium in Soils -- 8.1 Sample Collection and Preparation -- 8.1.1 Vertical Stratification -- 8.1.2 Spatial Heterogeneity in Response to Agronomic Management -- 8.1.3 Sample Drying and Handling -- 8.2 What Are the Forms of Potassium in Soil? -- 8.3 How Is Potassium Released from Different Solid-Phase Forms? -- 8.3.1 Potassium in Fertilizer and Crop Residues -- 8.3.2 Surface-Adsorbed (Exchangeable) Potassium -- 8.3.3 Chemical Weathering -- 8.4 How Do Soil Tests Assess Plant-Available Potassium? -- 8.4.1 Soil-Test Development -- 8.4.2 Soil Tests for Assessing Soil Solution Potassium -- 8.4.3 Soil Tests for Assessing Surface-Adsorbed Potassium -- 8.4.4 Soil Tests for Dissolving Interlayer/Structural Potassium -- 8.4.5 Soil Tests that Combine Multiple Mechanisms of Potassium Dissolution -- 8.4.6 Soil Tests for Assessing the Rate of Solution Potassium Replenishment -- 8.5 Difficulties Relating Soil Test Potassium to Crop Acquisition -- 8.5.1 Rates of Resupply to Potassium-Depleted Zones Around Active Roots.
8.5.2 Root System Architectures and Their Interaction with Soil Moisture -- 8.5.3 Variation in Root System Attributes that Allow Plants to Exploit Different Potassium Pools -- 8.5.4 Specificity of Soil Test Potassium-Crop Response Relationships and the Role of Trial Databases -- 8.6 Lessons Learned from Long-Term Experiments -- 8.7 Concluding Remarks -- References -- Chapter 9: Evaluating Plant Potassium Status -- 9.1 Visual Symptoms of Potassium Deficiency -- 9.2 Light Reflectance -- 9.3 Plant Tissue Chemical Content -- 9.3.1 Sufficiency Ranges (SR) -- 9.3.2 Diagnosis and Recommendation Integrated System (DRIS) -- 9.3.2.1 DRIS Chart -- 9.3.2.2 DRIS Indexes -- 9.3.3 The Modified DRIS System (M-DRIS) -- 9.3.4 Plant Analysis with Standardized Scores (PASS) -- 9.3.5 Compositional Nutrient Diagnosis (CND) -- 9.3.5.1 CND-clr -- 9.3.5.2 CND-ilr -- 9.3.6 Multiple Regression Approaches -- 9.3.7 Metabolite Profiles -- 9.3.8 Potassium Content in Plant Sap -- 9.4 Conclusions -- References -- Chapter 10: How Closely Is Potassium Mass Balance Related to Soil Test Changes? -- 10.1 Introduction -- 10.2 The Mass-Balance Approach -- 10.3 Temporal Nature of K Soil Test Values -- 10.4 Crop Residue Recycling in K Mass-Balance Considerations -- 10.5 Clay Chemistry and K Response -- 10.6 Relative Unresponsiveness in K Removal in Harvested Grain, Despite Wide Variability in Crop K Status and Responsiveness t... -- 10.7 Potassium Losses Due to Erosion from Wind and Water -- 10.8 Summary -- References -- Chapter 11: Assessing Potassium Mass Balances in Different Countries and Scales -- 11.1 Concepts of Soil Nutrient Balance -- 11.1.1 Potassium Removal and Use for Different Cropping Systems and Geopolitical Boundaries -- 11.1.2 Metrics for Nutrient Use Efficiency -- 11.1.3 Uncertainties in Estimating Nutrient Balances -- 11.1.4 Interpreting Nutrient Balance Information.
11.2 Australia.
author_facet Murrell, T. Scott.
Mikkelsen, Robert L.
Sulewski, Gavin.
Norton, Robert.
Thompson, Michael L.
author_variant t s m ts tsm
author2 Mikkelsen, Robert L.
Sulewski, Gavin.
Norton, Robert.
Thompson, Michael L.
author2_variant r l m rl rlm
g s gs
r n rn
m l t ml mlt
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Murrell, T. Scott.
title Improving Potassium Recommendations for Agricultural Crops.
title_full Improving Potassium Recommendations for Agricultural Crops.
title_fullStr Improving Potassium Recommendations for Agricultural Crops.
title_full_unstemmed Improving Potassium Recommendations for Agricultural Crops.
title_auth Improving Potassium Recommendations for Agricultural Crops.
title_new Improving Potassium Recommendations for Agricultural Crops.
title_sort improving potassium recommendations for agricultural crops.
publisher Springer International Publishing AG,
publishDate 2020
physical 1 online resource (466 pages)
edition 1st ed.
contents Intro -- Foreword -- Acknowledgments -- Contents -- Editors and Contributors -- Abbreviations -- Chapter 1: The Potassium Cycle and Its Relationship to Recommendation Development -- 1.1 Overview of the Potassium Cycle -- 1.2 Philosophy of a Potassium Recommendation -- 1.3 Challenges with Common Potassium Recommendation Terminology -- 1.4 Considerations for Recommendations Derived from the Mass Balance Approach to the Potassium Cycle -- 1.4.1 Exploring and Characterizing KPlant: Understood and Easily Assessed? -- 1.4.2 Exploring and Characterizing KSoil: Was Bray Right? -- 1.4.3 Exploring and Characterizing KFert and EFert: Important but Generally Overlooked? -- 1.4.4 Potassium Recommendations Without Soil Tests -- 1.4.4.1 Recommendations Based on Nutrient Removal -- 1.4.4.2 Recommendations Based on Plant Nutrient Uptake and Yield -- 1.5 Diagnostics Development: The Undelivered Promise of ``Big Data ́́-- 1.5.1 Data Limitations: Historic and Current -- 1.6 Opportunities Moving Forward -- 1.6.1 Mechanistic Modeling -- 1.6.2 Knowledge Gaps -- 1.6.3 Tools and Strategies, Data, and e-Infrastructure -- 1.6.3.1 Underutilized Data Sources with Potential -- 1.6.3.2 FAIR Data -- 1.6.3.3 Repositories and Data Publications, Catalogues, Registries, Knowledgebases -- References -- Chapter 2: Inputs: Potassium Sources for Agricultural Systems -- 2.1 Overview of Potassium Inputs -- 2.2 Atmospheric Deposition -- 2.3 Irrigation Water -- 2.4 Runoff and Erosion -- 2.5 Seeds, Cuttings, Transplants, and Residues -- 2.6 Organic Fertilizer -- 2.7 Commercial Fertilizer -- 2.7.1 Resources and Reserves -- 2.7.2 Materials and Use -- 2.7.2.1 Potassium Chloride (MOP) -- 2.7.2.2 Potassium Sulfate (SOP) -- 2.7.2.3 Potassium Nitrate (NOP) -- 2.7.2.4 Potassium Thiosulfate (KTS) -- 2.7.2.5 Langbeinite (SOPM) -- 2.7.2.6 Polyhalite -- 2.7.2.7 Potassium Hydroxide (KOH).
2.7.2.8 Potassium Phosphate -- 2.7.2.9 Mineral/Silicate K -- 2.7.2.10 Other Potassium Sources -- 2.7.3 Forms of Potassium Fertilizer -- 2.7.3.1 Bulk Blends -- 2.7.3.2 Complex (Compound) Granules -- 2.7.3.3 Fluid Fertilizers -- 2.7.4 Potassium for Fertigation -- 2.7.5 Salt Index -- 2.7.6 Chloride Considerations -- 2.7.7 Foliar Potassium Nutrition -- 2.8 Summary -- References -- Chapter 3: Outputs: Potassium Losses from Agricultural Systems -- 3.1 Removal in Harvested Crops -- 3.1.1 Whole-Plant Removal -- 3.2 Erosion -- 3.2.1 Water Erosion -- 3.2.2 Wind Erosion -- 3.3 Leaching -- 3.4 Modeling Potassium Losses -- 3.4.1 Conceptual Model of Leaching -- 3.4.2 EPIC -- 3.4.3 KLEACH -- 3.4.4 NUTMON -- 3.4.5 SVMLEACH-NK POTATO -- 3.4.6 SWAT-K -- 3.5 Open Burning -- 3.6 Considerations for Potassium Recommendations -- 3.7 Conclusions -- References -- Chapter 4: Rhizosphere Processes and Root Traits Determining the Acquisition of Soil Potassium -- 4.1 Soil Properties and Processes Determining the Acquisition of Potassium by Plants -- 4.1.1 Potassium Mobility: Mass Flow Versus Diffusion in the Rhizosphere -- 4.1.2 Potassium Availability and Bioavailability: Exchangeable Versus Nonexchangeable Pools in the Rhizosphere -- 4.1.3 Soil Profile Distribution: Topsoil Versus Subsoil Potassium Availability and Bioavailability -- 4.2 Root Morphological Traits Determining the Acquisition of Potassium by Plants -- 4.2.1 Root System Architecture and Plasticity -- 4.2.2 Root Length and Growth -- 4.2.3 Root Hairs and Mycorrhizae -- 4.3 Root Physiological Traits Determining the Acquisition of Potassium by Plants -- 4.3.1 Traits Related to Potassium Uptake and Depletion in the Rhizosphere -- 4.3.2 Traits Related to pH Modification in the Rhizosphere -- 4.3.3 Traits Related to Exudates in the Rhizosphere -- 4.4 Summary and Conclusions -- References.
Chapter 5: Potassium Use Efficiency of Plants -- 5.1 Metrics of Potassium Use Efficiency and Their Relationships -- 5.2 Differences in Potassium Uptake and Utilization Between Plant Species -- 5.2.1 Differences in KUpE Between Plant Species -- 5.2.1.1 Kinetics of Potassium Uptake -- 5.2.1.2 Root System Investment and Architecture -- 5.2.1.3 Rhizosphere Acidification and Root Exudates -- 5.2.2 Differences in KUtE Between Plant Species -- 5.3 Differences in Potassium Uptake and Utilization Within Crop Species -- 5.3.1 Differences in KUpE Within Plant Species -- 5.3.1.1 Kinetics of Potassium Uptake -- 5.3.1.2 Root System Investment and Architecture -- 5.3.1.3 Root Exudates -- 5.3.2 Differences in KUtE Within Crop Species -- 5.3.2.1 Partitioning of Potassium Within the Cell and Its Substitution with Other Ions -- 5.3.2.2 Partitioning and Redistribution of Potassium Within the Plant -- 5.3.2.3 Partitioning of Resources into the Economic Product -- 5.4 Breeding Crops for Greater Agronomic Potassium Use Efficiency -- 5.5 Conclusions -- References -- Chapter 6: Considerations for Unharvested Plant Potassium -- 6.1 The Crop Canopy as a Source of Potassium -- 6.2 Potential of Potassium Cycling by Crops and Cover Crops -- 6.3 Synchrony of Potassium Availability in Cropping Systems -- 6.4 Residue Potassium as a Means of Reducing Potassium Losses from the System -- 6.5 Potassium from Agro-Industrial Residues -- 6.6 Fertilizer Recommendations and Potassium Cycling -- 6.6.1 Modeling Potassium Release from Residues -- 6.6.2 Implications for Timing of Soil Sampling -- 6.7 Conclusion -- References -- Chapter 7: Considering Soil Potassium Pools with Dissimilar Plant Availability -- 7.1 Introduction -- 7.2 Solution Potassium and Potassium Activity -- 7.3 Surface-Adsorbed Potassium -- 7.4 Interlayer K in Micas and Partially Weathered Micas.
7.5 Interlayer Potassium in Secondary Layer Silicates -- 7.6 Structural Potassium in Feldspar and Feldspathoids -- 7.7 Neoformed Potassium Minerals -- 7.8 Fixation and Release of Interlayer Potassium -- 7.8.1 Contractive and Expansive Forces -- 7.8.2 Factors Affecting Potassium Fixation and Release -- 7.9 Interpreting ``Exchangeable Potassium ́́-- 7.10 Mineral Transformations -- 7.10.1 Reversible Changes in Interlayer Potassium -- 7.10.2 Implications for Building and Depleting Soil Fertility -- 7.11 Short-Term Transformations in the Rhizosphere -- 7.12 Nonexchangeable Potassium as a Functional Pool -- 7.13 Classifying Soils According to Their Potassium Behavior -- 7.14 Lessons Learned from Long-Term Experiments -- 7.15 Prognosis -- References -- Chapter 8: Using Soil Tests to Evaluate Plant Availability of Potassium in Soils -- 8.1 Sample Collection and Preparation -- 8.1.1 Vertical Stratification -- 8.1.2 Spatial Heterogeneity in Response to Agronomic Management -- 8.1.3 Sample Drying and Handling -- 8.2 What Are the Forms of Potassium in Soil? -- 8.3 How Is Potassium Released from Different Solid-Phase Forms? -- 8.3.1 Potassium in Fertilizer and Crop Residues -- 8.3.2 Surface-Adsorbed (Exchangeable) Potassium -- 8.3.3 Chemical Weathering -- 8.4 How Do Soil Tests Assess Plant-Available Potassium? -- 8.4.1 Soil-Test Development -- 8.4.2 Soil Tests for Assessing Soil Solution Potassium -- 8.4.3 Soil Tests for Assessing Surface-Adsorbed Potassium -- 8.4.4 Soil Tests for Dissolving Interlayer/Structural Potassium -- 8.4.5 Soil Tests that Combine Multiple Mechanisms of Potassium Dissolution -- 8.4.6 Soil Tests for Assessing the Rate of Solution Potassium Replenishment -- 8.5 Difficulties Relating Soil Test Potassium to Crop Acquisition -- 8.5.1 Rates of Resupply to Potassium-Depleted Zones Around Active Roots.
8.5.2 Root System Architectures and Their Interaction with Soil Moisture -- 8.5.3 Variation in Root System Attributes that Allow Plants to Exploit Different Potassium Pools -- 8.5.4 Specificity of Soil Test Potassium-Crop Response Relationships and the Role of Trial Databases -- 8.6 Lessons Learned from Long-Term Experiments -- 8.7 Concluding Remarks -- References -- Chapter 9: Evaluating Plant Potassium Status -- 9.1 Visual Symptoms of Potassium Deficiency -- 9.2 Light Reflectance -- 9.3 Plant Tissue Chemical Content -- 9.3.1 Sufficiency Ranges (SR) -- 9.3.2 Diagnosis and Recommendation Integrated System (DRIS) -- 9.3.2.1 DRIS Chart -- 9.3.2.2 DRIS Indexes -- 9.3.3 The Modified DRIS System (M-DRIS) -- 9.3.4 Plant Analysis with Standardized Scores (PASS) -- 9.3.5 Compositional Nutrient Diagnosis (CND) -- 9.3.5.1 CND-clr -- 9.3.5.2 CND-ilr -- 9.3.6 Multiple Regression Approaches -- 9.3.7 Metabolite Profiles -- 9.3.8 Potassium Content in Plant Sap -- 9.4 Conclusions -- References -- Chapter 10: How Closely Is Potassium Mass Balance Related to Soil Test Changes? -- 10.1 Introduction -- 10.2 The Mass-Balance Approach -- 10.3 Temporal Nature of K Soil Test Values -- 10.4 Crop Residue Recycling in K Mass-Balance Considerations -- 10.5 Clay Chemistry and K Response -- 10.6 Relative Unresponsiveness in K Removal in Harvested Grain, Despite Wide Variability in Crop K Status and Responsiveness t... -- 10.7 Potassium Losses Due to Erosion from Wind and Water -- 10.8 Summary -- References -- Chapter 11: Assessing Potassium Mass Balances in Different Countries and Scales -- 11.1 Concepts of Soil Nutrient Balance -- 11.1.1 Potassium Removal and Use for Different Cropping Systems and Geopolitical Boundaries -- 11.1.2 Metrics for Nutrient Use Efficiency -- 11.1.3 Uncertainties in Estimating Nutrient Balances -- 11.1.4 Interpreting Nutrient Balance Information.
11.2 Australia.
isbn 9783030591977
9783030591960
callnumber-first S - Agriculture
callnumber-subject S - General Agriculture
callnumber-label S1-972
callnumber-sort S 11 3972
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6425460
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 630 - Agriculture
dewey-ones 631 - Techniques, equipment & materials
dewey-full 631.83
dewey-sort 3631.83
dewey-raw 631.83
dewey-search 631.83
oclc_num 1231606923
work_keys_str_mv AT murrelltscott improvingpotassiumrecommendationsforagriculturalcrops
AT mikkelsenrobertl improvingpotassiumrecommendationsforagriculturalcrops
AT sulewskigavin improvingpotassiumrecommendationsforagriculturalcrops
AT nortonrobert improvingpotassiumrecommendationsforagriculturalcrops
AT thompsonmichaell improvingpotassiumrecommendationsforagriculturalcrops
status_str n
ids_txt_mv (MiAaPQ)5006425460
(Au-PeEL)EBL6425460
(OCoLC)1231606923
carrierType_str_mv cr
is_hierarchy_title Improving Potassium Recommendations for Agricultural Crops.
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
marc_error Info : To few letters in translations, choosing MARC8 --- [ 856 : z ]
_version_ 1792331057528307712
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11043nam a22004933i 4500</leader><controlfield tag="001">5006425460</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073838.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2020 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030591977</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030591960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006425460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6425460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1231606923</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">S1-972</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">631.83</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Murrell, T. Scott.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving Potassium Recommendations for Agricultural Crops.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (466 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Acknowledgments -- Contents -- Editors and Contributors -- Abbreviations -- Chapter 1: The Potassium Cycle and Its Relationship to Recommendation Development -- 1.1 Overview of the Potassium Cycle -- 1.2 Philosophy of a Potassium Recommendation -- 1.3 Challenges with Common Potassium Recommendation Terminology -- 1.4 Considerations for Recommendations Derived from the Mass Balance Approach to the Potassium Cycle -- 1.4.1 Exploring and Characterizing KPlant: Understood and Easily Assessed? -- 1.4.2 Exploring and Characterizing KSoil: Was Bray Right? -- 1.4.3 Exploring and Characterizing KFert and EFert: Important but Generally Overlooked? -- 1.4.4 Potassium Recommendations Without Soil Tests -- 1.4.4.1 Recommendations Based on Nutrient Removal -- 1.4.4.2 Recommendations Based on Plant Nutrient Uptake and Yield -- 1.5 Diagnostics Development: The Undelivered Promise of ``Big Data ́́-- 1.5.1 Data Limitations: Historic and Current -- 1.6 Opportunities Moving Forward -- 1.6.1 Mechanistic Modeling -- 1.6.2 Knowledge Gaps -- 1.6.3 Tools and Strategies, Data, and e-Infrastructure -- 1.6.3.1 Underutilized Data Sources with Potential -- 1.6.3.2 FAIR Data -- 1.6.3.3 Repositories and Data Publications, Catalogues, Registries, Knowledgebases -- References -- Chapter 2: Inputs: Potassium Sources for Agricultural Systems -- 2.1 Overview of Potassium Inputs -- 2.2 Atmospheric Deposition -- 2.3 Irrigation Water -- 2.4 Runoff and Erosion -- 2.5 Seeds, Cuttings, Transplants, and Residues -- 2.6 Organic Fertilizer -- 2.7 Commercial Fertilizer -- 2.7.1 Resources and Reserves -- 2.7.2 Materials and Use -- 2.7.2.1 Potassium Chloride (MOP) -- 2.7.2.2 Potassium Sulfate (SOP) -- 2.7.2.3 Potassium Nitrate (NOP) -- 2.7.2.4 Potassium Thiosulfate (KTS) -- 2.7.2.5 Langbeinite (SOPM) -- 2.7.2.6 Polyhalite -- 2.7.2.7 Potassium Hydroxide (KOH).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.7.2.8 Potassium Phosphate -- 2.7.2.9 Mineral/Silicate K -- 2.7.2.10 Other Potassium Sources -- 2.7.3 Forms of Potassium Fertilizer -- 2.7.3.1 Bulk Blends -- 2.7.3.2 Complex (Compound) Granules -- 2.7.3.3 Fluid Fertilizers -- 2.7.4 Potassium for Fertigation -- 2.7.5 Salt Index -- 2.7.6 Chloride Considerations -- 2.7.7 Foliar Potassium Nutrition -- 2.8 Summary -- References -- Chapter 3: Outputs: Potassium Losses from Agricultural Systems -- 3.1 Removal in Harvested Crops -- 3.1.1 Whole-Plant Removal -- 3.2 Erosion -- 3.2.1 Water Erosion -- 3.2.2 Wind Erosion -- 3.3 Leaching -- 3.4 Modeling Potassium Losses -- 3.4.1 Conceptual Model of Leaching -- 3.4.2 EPIC -- 3.4.3 KLEACH -- 3.4.4 NUTMON -- 3.4.5 SVMLEACH-NK POTATO -- 3.4.6 SWAT-K -- 3.5 Open Burning -- 3.6 Considerations for Potassium Recommendations -- 3.7 Conclusions -- References -- Chapter 4: Rhizosphere Processes and Root Traits Determining the Acquisition of Soil Potassium -- 4.1 Soil Properties and Processes Determining the Acquisition of Potassium by Plants -- 4.1.1 Potassium Mobility: Mass Flow Versus Diffusion in the Rhizosphere -- 4.1.2 Potassium Availability and Bioavailability: Exchangeable Versus Nonexchangeable Pools in the Rhizosphere -- 4.1.3 Soil Profile Distribution: Topsoil Versus Subsoil Potassium Availability and Bioavailability -- 4.2 Root Morphological Traits Determining the Acquisition of Potassium by Plants -- 4.2.1 Root System Architecture and Plasticity -- 4.2.2 Root Length and Growth -- 4.2.3 Root Hairs and Mycorrhizae -- 4.3 Root Physiological Traits Determining the Acquisition of Potassium by Plants -- 4.3.1 Traits Related to Potassium Uptake and Depletion in the Rhizosphere -- 4.3.2 Traits Related to pH Modification in the Rhizosphere -- 4.3.3 Traits Related to Exudates in the Rhizosphere -- 4.4 Summary and Conclusions -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 5: Potassium Use Efficiency of Plants -- 5.1 Metrics of Potassium Use Efficiency and Their Relationships -- 5.2 Differences in Potassium Uptake and Utilization Between Plant Species -- 5.2.1 Differences in KUpE Between Plant Species -- 5.2.1.1 Kinetics of Potassium Uptake -- 5.2.1.2 Root System Investment and Architecture -- 5.2.1.3 Rhizosphere Acidification and Root Exudates -- 5.2.2 Differences in KUtE Between Plant Species -- 5.3 Differences in Potassium Uptake and Utilization Within Crop Species -- 5.3.1 Differences in KUpE Within Plant Species -- 5.3.1.1 Kinetics of Potassium Uptake -- 5.3.1.2 Root System Investment and Architecture -- 5.3.1.3 Root Exudates -- 5.3.2 Differences in KUtE Within Crop Species -- 5.3.2.1 Partitioning of Potassium Within the Cell and Its Substitution with Other Ions -- 5.3.2.2 Partitioning and Redistribution of Potassium Within the Plant -- 5.3.2.3 Partitioning of Resources into the Economic Product -- 5.4 Breeding Crops for Greater Agronomic Potassium Use Efficiency -- 5.5 Conclusions -- References -- Chapter 6: Considerations for Unharvested Plant Potassium -- 6.1 The Crop Canopy as a Source of Potassium -- 6.2 Potential of Potassium Cycling by Crops and Cover Crops -- 6.3 Synchrony of Potassium Availability in Cropping Systems -- 6.4 Residue Potassium as a Means of Reducing Potassium Losses from the System -- 6.5 Potassium from Agro-Industrial Residues -- 6.6 Fertilizer Recommendations and Potassium Cycling -- 6.6.1 Modeling Potassium Release from Residues -- 6.6.2 Implications for Timing of Soil Sampling -- 6.7 Conclusion -- References -- Chapter 7: Considering Soil Potassium Pools with Dissimilar Plant Availability -- 7.1 Introduction -- 7.2 Solution Potassium and Potassium Activity -- 7.3 Surface-Adsorbed Potassium -- 7.4 Interlayer K in Micas and Partially Weathered Micas.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5 Interlayer Potassium in Secondary Layer Silicates -- 7.6 Structural Potassium in Feldspar and Feldspathoids -- 7.7 Neoformed Potassium Minerals -- 7.8 Fixation and Release of Interlayer Potassium -- 7.8.1 Contractive and Expansive Forces -- 7.8.2 Factors Affecting Potassium Fixation and Release -- 7.9 Interpreting ``Exchangeable Potassium ́́-- 7.10 Mineral Transformations -- 7.10.1 Reversible Changes in Interlayer Potassium -- 7.10.2 Implications for Building and Depleting Soil Fertility -- 7.11 Short-Term Transformations in the Rhizosphere -- 7.12 Nonexchangeable Potassium as a Functional Pool -- 7.13 Classifying Soils According to Their Potassium Behavior -- 7.14 Lessons Learned from Long-Term Experiments -- 7.15 Prognosis -- References -- Chapter 8: Using Soil Tests to Evaluate Plant Availability of Potassium in Soils -- 8.1 Sample Collection and Preparation -- 8.1.1 Vertical Stratification -- 8.1.2 Spatial Heterogeneity in Response to Agronomic Management -- 8.1.3 Sample Drying and Handling -- 8.2 What Are the Forms of Potassium in Soil? -- 8.3 How Is Potassium Released from Different Solid-Phase Forms? -- 8.3.1 Potassium in Fertilizer and Crop Residues -- 8.3.2 Surface-Adsorbed (Exchangeable) Potassium -- 8.3.3 Chemical Weathering -- 8.4 How Do Soil Tests Assess Plant-Available Potassium? -- 8.4.1 Soil-Test Development -- 8.4.2 Soil Tests for Assessing Soil Solution Potassium -- 8.4.3 Soil Tests for Assessing Surface-Adsorbed Potassium -- 8.4.4 Soil Tests for Dissolving Interlayer/Structural Potassium -- 8.4.5 Soil Tests that Combine Multiple Mechanisms of Potassium Dissolution -- 8.4.6 Soil Tests for Assessing the Rate of Solution Potassium Replenishment -- 8.5 Difficulties Relating Soil Test Potassium to Crop Acquisition -- 8.5.1 Rates of Resupply to Potassium-Depleted Zones Around Active Roots.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.5.2 Root System Architectures and Their Interaction with Soil Moisture -- 8.5.3 Variation in Root System Attributes that Allow Plants to Exploit Different Potassium Pools -- 8.5.4 Specificity of Soil Test Potassium-Crop Response Relationships and the Role of Trial Databases -- 8.6 Lessons Learned from Long-Term Experiments -- 8.7 Concluding Remarks -- References -- Chapter 9: Evaluating Plant Potassium Status -- 9.1 Visual Symptoms of Potassium Deficiency -- 9.2 Light Reflectance -- 9.3 Plant Tissue Chemical Content -- 9.3.1 Sufficiency Ranges (SR) -- 9.3.2 Diagnosis and Recommendation Integrated System (DRIS) -- 9.3.2.1 DRIS Chart -- 9.3.2.2 DRIS Indexes -- 9.3.3 The Modified DRIS System (M-DRIS) -- 9.3.4 Plant Analysis with Standardized Scores (PASS) -- 9.3.5 Compositional Nutrient Diagnosis (CND) -- 9.3.5.1 CND-clr -- 9.3.5.2 CND-ilr -- 9.3.6 Multiple Regression Approaches -- 9.3.7 Metabolite Profiles -- 9.3.8 Potassium Content in Plant Sap -- 9.4 Conclusions -- References -- Chapter 10: How Closely Is Potassium Mass Balance Related to Soil Test Changes? -- 10.1 Introduction -- 10.2 The Mass-Balance Approach -- 10.3 Temporal Nature of K Soil Test Values -- 10.4 Crop Residue Recycling in K Mass-Balance Considerations -- 10.5 Clay Chemistry and K Response -- 10.6 Relative Unresponsiveness in K Removal in Harvested Grain, Despite Wide Variability in Crop K Status and Responsiveness t... -- 10.7 Potassium Losses Due to Erosion from Wind and Water -- 10.8 Summary -- References -- Chapter 11: Assessing Potassium Mass Balances in Different Countries and Scales -- 11.1 Concepts of Soil Nutrient Balance -- 11.1.1 Potassium Removal and Use for Different Cropping Systems and Geopolitical Boundaries -- 11.1.2 Metrics for Nutrient Use Efficiency -- 11.1.3 Uncertainties in Estimating Nutrient Balances -- 11.1.4 Interpreting Nutrient Balance Information.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.2 Australia.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikkelsen, Robert L.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sulewski, Gavin.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Norton, Robert.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thompson, Michael L.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Murrell, T. Scott</subfield><subfield code="t">Improving Potassium Recommendations for Agricultural Crops</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030591960</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6425460</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>