Improving Potassium Recommendations for Agricultural Crops.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2020.
©2021.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (466 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 11043nam a22004933i 4500
001 5006425460
003 MiAaPQ
005 20240229073838.0
006 m o d |
007 cr cnu||||||||
008 240229s2020 xx o ||||0 eng d
020 |a 9783030591977  |q (electronic bk.) 
020 |z 9783030591960 
035 |a (MiAaPQ)5006425460 
035 |a (Au-PeEL)EBL6425460 
035 |a (OCoLC)1231606923 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a S1-972 
082 0 |a 631.83 
100 1 |a Murrell, T. Scott. 
245 1 0 |a Improving Potassium Recommendations for Agricultural Crops. 
250 |a 1st ed. 
264 1 |a Cham :  |b Springer International Publishing AG,  |c 2020. 
264 4 |c ©2021. 
300 |a 1 online resource (466 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Foreword -- Acknowledgments -- Contents -- Editors and Contributors -- Abbreviations -- Chapter 1: The Potassium Cycle and Its Relationship to Recommendation Development -- 1.1 Overview of the Potassium Cycle -- 1.2 Philosophy of a Potassium Recommendation -- 1.3 Challenges with Common Potassium Recommendation Terminology -- 1.4 Considerations for Recommendations Derived from the Mass Balance Approach to the Potassium Cycle -- 1.4.1 Exploring and Characterizing KPlant: Understood and Easily Assessed? -- 1.4.2 Exploring and Characterizing KSoil: Was Bray Right? -- 1.4.3 Exploring and Characterizing KFert and EFert: Important but Generally Overlooked? -- 1.4.4 Potassium Recommendations Without Soil Tests -- 1.4.4.1 Recommendations Based on Nutrient Removal -- 1.4.4.2 Recommendations Based on Plant Nutrient Uptake and Yield -- 1.5 Diagnostics Development: The Undelivered Promise of ``Big Data ́́-- 1.5.1 Data Limitations: Historic and Current -- 1.6 Opportunities Moving Forward -- 1.6.1 Mechanistic Modeling -- 1.6.2 Knowledge Gaps -- 1.6.3 Tools and Strategies, Data, and e-Infrastructure -- 1.6.3.1 Underutilized Data Sources with Potential -- 1.6.3.2 FAIR Data -- 1.6.3.3 Repositories and Data Publications, Catalogues, Registries, Knowledgebases -- References -- Chapter 2: Inputs: Potassium Sources for Agricultural Systems -- 2.1 Overview of Potassium Inputs -- 2.2 Atmospheric Deposition -- 2.3 Irrigation Water -- 2.4 Runoff and Erosion -- 2.5 Seeds, Cuttings, Transplants, and Residues -- 2.6 Organic Fertilizer -- 2.7 Commercial Fertilizer -- 2.7.1 Resources and Reserves -- 2.7.2 Materials and Use -- 2.7.2.1 Potassium Chloride (MOP) -- 2.7.2.2 Potassium Sulfate (SOP) -- 2.7.2.3 Potassium Nitrate (NOP) -- 2.7.2.4 Potassium Thiosulfate (KTS) -- 2.7.2.5 Langbeinite (SOPM) -- 2.7.2.6 Polyhalite -- 2.7.2.7 Potassium Hydroxide (KOH). 
505 8 |a 2.7.2.8 Potassium Phosphate -- 2.7.2.9 Mineral/Silicate K -- 2.7.2.10 Other Potassium Sources -- 2.7.3 Forms of Potassium Fertilizer -- 2.7.3.1 Bulk Blends -- 2.7.3.2 Complex (Compound) Granules -- 2.7.3.3 Fluid Fertilizers -- 2.7.4 Potassium for Fertigation -- 2.7.5 Salt Index -- 2.7.6 Chloride Considerations -- 2.7.7 Foliar Potassium Nutrition -- 2.8 Summary -- References -- Chapter 3: Outputs: Potassium Losses from Agricultural Systems -- 3.1 Removal in Harvested Crops -- 3.1.1 Whole-Plant Removal -- 3.2 Erosion -- 3.2.1 Water Erosion -- 3.2.2 Wind Erosion -- 3.3 Leaching -- 3.4 Modeling Potassium Losses -- 3.4.1 Conceptual Model of Leaching -- 3.4.2 EPIC -- 3.4.3 KLEACH -- 3.4.4 NUTMON -- 3.4.5 SVMLEACH-NK POTATO -- 3.4.6 SWAT-K -- 3.5 Open Burning -- 3.6 Considerations for Potassium Recommendations -- 3.7 Conclusions -- References -- Chapter 4: Rhizosphere Processes and Root Traits Determining the Acquisition of Soil Potassium -- 4.1 Soil Properties and Processes Determining the Acquisition of Potassium by Plants -- 4.1.1 Potassium Mobility: Mass Flow Versus Diffusion in the Rhizosphere -- 4.1.2 Potassium Availability and Bioavailability: Exchangeable Versus Nonexchangeable Pools in the Rhizosphere -- 4.1.3 Soil Profile Distribution: Topsoil Versus Subsoil Potassium Availability and Bioavailability -- 4.2 Root Morphological Traits Determining the Acquisition of Potassium by Plants -- 4.2.1 Root System Architecture and Plasticity -- 4.2.2 Root Length and Growth -- 4.2.3 Root Hairs and Mycorrhizae -- 4.3 Root Physiological Traits Determining the Acquisition of Potassium by Plants -- 4.3.1 Traits Related to Potassium Uptake and Depletion in the Rhizosphere -- 4.3.2 Traits Related to pH Modification in the Rhizosphere -- 4.3.3 Traits Related to Exudates in the Rhizosphere -- 4.4 Summary and Conclusions -- References. 
505 8 |a Chapter 5: Potassium Use Efficiency of Plants -- 5.1 Metrics of Potassium Use Efficiency and Their Relationships -- 5.2 Differences in Potassium Uptake and Utilization Between Plant Species -- 5.2.1 Differences in KUpE Between Plant Species -- 5.2.1.1 Kinetics of Potassium Uptake -- 5.2.1.2 Root System Investment and Architecture -- 5.2.1.3 Rhizosphere Acidification and Root Exudates -- 5.2.2 Differences in KUtE Between Plant Species -- 5.3 Differences in Potassium Uptake and Utilization Within Crop Species -- 5.3.1 Differences in KUpE Within Plant Species -- 5.3.1.1 Kinetics of Potassium Uptake -- 5.3.1.2 Root System Investment and Architecture -- 5.3.1.3 Root Exudates -- 5.3.2 Differences in KUtE Within Crop Species -- 5.3.2.1 Partitioning of Potassium Within the Cell and Its Substitution with Other Ions -- 5.3.2.2 Partitioning and Redistribution of Potassium Within the Plant -- 5.3.2.3 Partitioning of Resources into the Economic Product -- 5.4 Breeding Crops for Greater Agronomic Potassium Use Efficiency -- 5.5 Conclusions -- References -- Chapter 6: Considerations for Unharvested Plant Potassium -- 6.1 The Crop Canopy as a Source of Potassium -- 6.2 Potential of Potassium Cycling by Crops and Cover Crops -- 6.3 Synchrony of Potassium Availability in Cropping Systems -- 6.4 Residue Potassium as a Means of Reducing Potassium Losses from the System -- 6.5 Potassium from Agro-Industrial Residues -- 6.6 Fertilizer Recommendations and Potassium Cycling -- 6.6.1 Modeling Potassium Release from Residues -- 6.6.2 Implications for Timing of Soil Sampling -- 6.7 Conclusion -- References -- Chapter 7: Considering Soil Potassium Pools with Dissimilar Plant Availability -- 7.1 Introduction -- 7.2 Solution Potassium and Potassium Activity -- 7.3 Surface-Adsorbed Potassium -- 7.4 Interlayer K in Micas and Partially Weathered Micas. 
505 8 |a 7.5 Interlayer Potassium in Secondary Layer Silicates -- 7.6 Structural Potassium in Feldspar and Feldspathoids -- 7.7 Neoformed Potassium Minerals -- 7.8 Fixation and Release of Interlayer Potassium -- 7.8.1 Contractive and Expansive Forces -- 7.8.2 Factors Affecting Potassium Fixation and Release -- 7.9 Interpreting ``Exchangeable Potassium ́́-- 7.10 Mineral Transformations -- 7.10.1 Reversible Changes in Interlayer Potassium -- 7.10.2 Implications for Building and Depleting Soil Fertility -- 7.11 Short-Term Transformations in the Rhizosphere -- 7.12 Nonexchangeable Potassium as a Functional Pool -- 7.13 Classifying Soils According to Their Potassium Behavior -- 7.14 Lessons Learned from Long-Term Experiments -- 7.15 Prognosis -- References -- Chapter 8: Using Soil Tests to Evaluate Plant Availability of Potassium in Soils -- 8.1 Sample Collection and Preparation -- 8.1.1 Vertical Stratification -- 8.1.2 Spatial Heterogeneity in Response to Agronomic Management -- 8.1.3 Sample Drying and Handling -- 8.2 What Are the Forms of Potassium in Soil? -- 8.3 How Is Potassium Released from Different Solid-Phase Forms? -- 8.3.1 Potassium in Fertilizer and Crop Residues -- 8.3.2 Surface-Adsorbed (Exchangeable) Potassium -- 8.3.3 Chemical Weathering -- 8.4 How Do Soil Tests Assess Plant-Available Potassium? -- 8.4.1 Soil-Test Development -- 8.4.2 Soil Tests for Assessing Soil Solution Potassium -- 8.4.3 Soil Tests for Assessing Surface-Adsorbed Potassium -- 8.4.4 Soil Tests for Dissolving Interlayer/Structural Potassium -- 8.4.5 Soil Tests that Combine Multiple Mechanisms of Potassium Dissolution -- 8.4.6 Soil Tests for Assessing the Rate of Solution Potassium Replenishment -- 8.5 Difficulties Relating Soil Test Potassium to Crop Acquisition -- 8.5.1 Rates of Resupply to Potassium-Depleted Zones Around Active Roots. 
505 8 |a 8.5.2 Root System Architectures and Their Interaction with Soil Moisture -- 8.5.3 Variation in Root System Attributes that Allow Plants to Exploit Different Potassium Pools -- 8.5.4 Specificity of Soil Test Potassium-Crop Response Relationships and the Role of Trial Databases -- 8.6 Lessons Learned from Long-Term Experiments -- 8.7 Concluding Remarks -- References -- Chapter 9: Evaluating Plant Potassium Status -- 9.1 Visual Symptoms of Potassium Deficiency -- 9.2 Light Reflectance -- 9.3 Plant Tissue Chemical Content -- 9.3.1 Sufficiency Ranges (SR) -- 9.3.2 Diagnosis and Recommendation Integrated System (DRIS) -- 9.3.2.1 DRIS Chart -- 9.3.2.2 DRIS Indexes -- 9.3.3 The Modified DRIS System (M-DRIS) -- 9.3.4 Plant Analysis with Standardized Scores (PASS) -- 9.3.5 Compositional Nutrient Diagnosis (CND) -- 9.3.5.1 CND-clr -- 9.3.5.2 CND-ilr -- 9.3.6 Multiple Regression Approaches -- 9.3.7 Metabolite Profiles -- 9.3.8 Potassium Content in Plant Sap -- 9.4 Conclusions -- References -- Chapter 10: How Closely Is Potassium Mass Balance Related to Soil Test Changes? -- 10.1 Introduction -- 10.2 The Mass-Balance Approach -- 10.3 Temporal Nature of K Soil Test Values -- 10.4 Crop Residue Recycling in K Mass-Balance Considerations -- 10.5 Clay Chemistry and K Response -- 10.6 Relative Unresponsiveness in K Removal in Harvested Grain, Despite Wide Variability in Crop K Status and Responsiveness t... -- 10.7 Potassium Losses Due to Erosion from Wind and Water -- 10.8 Summary -- References -- Chapter 11: Assessing Potassium Mass Balances in Different Countries and Scales -- 11.1 Concepts of Soil Nutrient Balance -- 11.1.1 Potassium Removal and Use for Different Cropping Systems and Geopolitical Boundaries -- 11.1.2 Metrics for Nutrient Use Efficiency -- 11.1.3 Uncertainties in Estimating Nutrient Balances -- 11.1.4 Interpreting Nutrient Balance Information. 
505 8 |a 11.2 Australia. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Mikkelsen, Robert L. 
700 1 |a Sulewski, Gavin. 
700 1 |a Norton, Robert. 
700 1 |a Thompson, Michael L. 
776 0 8 |i Print version:  |a Murrell, T. Scott  |t Improving Potassium Recommendations for Agricultural Crops  |d Cham : Springer International Publishing AG,c2020  |z 9783030591960 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6425460  |z Click to View