Ambisonics : : A Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement, and Virtual Reality.

Saved in:
Bibliographic Details
Superior document:Springer Topics in Signal Processing Series ; v.19
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:Springer Topics in Signal Processing Series
Online Access:
Physical Description:1 online resource (223 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Acknowledgements
  • Outline
  • Contents
  • 1 XY, MS, and First-Order Ambisonics
  • 1.1 Blumlein Pair: XY Recording and Playback
  • 1.2 MS Recording and Playback
  • 1.3 First-Order Ambisonics (FOA)
  • 1.3.1 2D First-Order Ambisonic Recording and Playback
  • 1.3.2 3D First-Order Ambisonic Recording and Playback
  • 1.4 Practical Free-Software Examples
  • 1.4.1 Pd with Iemmatrix, Iemlib, and Zexy
  • 1.4.2 Ambix VST Plugins
  • 1.5 Motivation of Higher-Order Ambisonics
  • References
  • 2 Auditory Events of Multi-loudspeaker Playback
  • 2.1 Loudness
  • 2.2 Direction
  • 2.2.1 Time Differences on Frontal, Horizontal Loudspeaker Pair
  • 2.2.2 Level Differences on Frontal, Horizontal Loudspeaker Pair
  • 2.2.3 Level Differences on Horizontally Surrounding Pairs
  • 2.2.4 Level Differences on Frontal, Horizontal to Vertical Pairs
  • 2.2.5 Vector Models for Horizontal Loudspeaker Pairs
  • 2.2.6 Level Differences on Frontal Loudspeaker Triangles
  • 2.2.7 Level Differences on Frontal Loudspeaker Rectangles
  • 2.2.8 Vector Model for More than 2 Loudspeakers
  • 2.2.9 Vector Model for Off-Center Listening Positions
  • 2.3 Width
  • 2.3.1 Model of the Perceived Width
  • 2.4 Coloration
  • 2.5 Open Listening Experiment Data
  • References
  • 3 Amplitude Panning Using Vector Bases
  • 3.1 Vector-Base Amplitude Panning (VBAP)
  • 3.2 Multiple-Direction Amplitude Panning (MDAP)
  • 3.3 Challenges in 3D Triangulation: Imaginary Loudspeaker Insertion and Downmix
  • 3.4 Practical Free-Software Examples
  • 3.4.1 VBAP/MDAP Object for Pd
  • 3.4.2 SPARTA Panner Plugin
  • References
  • 4 Ambisonic Amplitude Panning and Decoding in Higher Orders
  • 4.1 Direction Spread in First-Order 2D Ambisonics
  • 4.2 Higher-Order Polynomials and Harmonics
  • 4.3 Angular/Directional Harmonics in 2D and 3D
  • 4.4 Panning with Circular Harmonics in 2D.
  • 4.5 Ambisonics Encoding and Optimal Decoding in 2D
  • 4.6 Listening Experiments on 2D Ambisonics
  • 4.7 Panning with Spherical Harmonics in 3D
  • 4.8 Ambisonic Encoding and Optimal Decoding in 3D
  • 4.9 Ambisonic Decoding to Loudspeakers
  • 4.9.1 Sampling Ambisonic Decoder (SAD)
  • 4.9.2 Mode Matching Decoder (MAD)
  • 4.9.3 Energy Preservation on Optimal Layouts
  • 4.9.4 Loudness Deficiencies on Sub-optimal Layouts
  • 4.9.5 Energy-Preserving Ambisonic Decoder (EPAD)
  • 4.9.6 All-Round Ambisonic Decoding (AllRAD)
  • 4.9.7 EPAD and AllRAD on Sub-optimal Layouts
  • 4.9.8 Decoding to Hemispherical 3D Loudspeaker Layouts
  • 4.10 Practical Studio/Sound Reinforcement Application Examples
  • 4.11 Ambisonic Decoding to Headphones
  • 4.11.1 High-Frequency Time-Aligned Binaural Decoding (TAC)
  • 4.11.2 Magnitude Least Squares (MagLS)
  • 4.11.3 Diffuse-Field Covariance Constraint
  • 4.12 Practical Free-Software Examples
  • 4.12.1 Pd and Circular/Spherical Harmonics
  • 4.12.2 Ambix Encoder, IEM MultiEncoder, and IEM AllRADecoder
  • 4.12.3 Reaper, IEM RoomEncoder, and IEM BinauralDecoder
  • References
  • 5 Signal Flow and Effects in Ambisonic Productions
  • 5.1 Embedding of Channel-Based, Spot-Microphone, and First-Order Recordings
  • 5.2 Frequency-Independent Ambisonic Effects
  • 5.2.1 Mirror
  • 5.2.2 3D Rotation
  • 5.2.3 Directional Level Modification/Windowing
  • 5.2.4 Warping
  • 5.3 Parametric Equalization
  • 5.4 Dynamic Processing/Compression
  • 5.5 Widening (Distance/Diffuseness/Early Lateral Reflections)
  • 5.6 Feedback Delay Networks for Diffuse Reverberation
  • 5.7 Reverberation by Measured Room Impulse Responses and Spatial Decomposition Method in Ambisonics
  • 5.8 Resolution Enhancement: DirAC, HARPEX, COMPASS
  • 5.9 Practical Free-Software Examples
  • 5.9.1 IEM, ambix, and mcfx Plug-In Suites
  • 5.9.2 Aalto SPARTA
  • 5.9.3 Røde
  • References.
  • 6 Higher-Order Ambisonic Microphones and the Wave Equation (Linear, Lossless)
  • 6.1 Equation of Compression
  • 6.2 Equation of Motion
  • 6.3 Wave Equation
  • 6.3.1 Elementary Inhomogeneous Solution: Green's Function (Free Field)
  • 6.4 Basis Solutions in Spherical Coordinates
  • 6.5 Scattering by Rigid Higher-Order Microphone Surface
  • 6.6 Higher-Order Microphone Array Encoding
  • 6.7 Discrete Sound Pressure Samples in Spherical Harmonics
  • 6.8 Regularizing Filter Bank for Radial Filters
  • 6.9 Loudness-Normalized Sub-band Side-Lobe Suppression
  • 6.10 Influence of Gain Matching, Noise, Side-Lobe Suppression
  • 6.11 Practical Free-Software Examples
  • 6.11.1 Eigenmike Em32 Encoding Using Mcfx and IEM Plug-In Suites
  • 6.11.2 SPARTA Array2SH
  • References
  • 7 Compact Spherical Loudspeaker Arrays
  • 7.1 Auditory Events of Ambisonically Controlled Directivity
  • 7.1.1 Perceived Distance
  • 7.1.2 Perceived Direction
  • 7.2 First-Order Compact Loudspeaker Arrays and Cubes
  • 7.3 Higher-Order Compact Spherical Loudspeaker Arrays and IKO
  • 7.3.1 Directivity Control
  • 7.3.2 Control System and Verification Based on Measurements
  • 7.4 Auditory Objects of the IKO
  • 7.4.1 Static Auditory Objects
  • 7.4.2 Moving Auditory Objects
  • 7.5 Practical Free-Software Examples
  • 7.5.1 IEM Room Encoder and Directivity Shaper
  • 7.5.2 IEM Cubes 5.1 Player and Surround with Depth
  • 7.5.3 IKO
  • References
  • Appendix
  • A.1 Harmonic Functions
  • A.2 Laplacian in Orthogonal Coordinates
  • A.3 Laplacian in Spherical Coordinates
  • A.3.1 The Radial Part
  • A.3.2 The Azimuthal Part
  • A.3.3 The Zenithal Part
  • A.3.4 Azimuthal Solution in 2D and 3D
  • A.3.5 Towards Spherical Harmonics (3D)
  • A.3.6 Zenithal Solution: Associated Legendre Differential Equation
  • A.3.7 Spherical Harmonics
  • A.4 Encoding to SH and Decoding to SH.
  • A.5 Covariance Constraint for Binaural Ambisonic Decoding
  • A.6 Physics of the Helmholtz Equation
  • A.6.1 Adiabatic Compression
  • A.6.2 Potential and Kinetic Sound Energies, Intensity, Diffuseness
  • A.6.3 Green's Function in 3 Cartesian Dimensions
  • A.6.4 Radial Solution of the Helmholtz Equation
  • A.6.5 Green's Function in Spherical Solutions, Angular Distributions, Plane Waves
  • A.7 Sine and Tangent Law
  • References.