Interdisciplinary Mathematics Education : : The State of the Art and Beyond.

Saved in:
Bibliographic Details
Superior document:ICME-13 Monographs
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:ICME-13 Monographs
Online Access:
Physical Description:1 online resource (294 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Contents
  • 1 Introduction to Interdisciplinary Mathematics Education
  • 1.1 Origins and Context of This Volume
  • 1.2 The State of the Art in 2016: What Next?
  • 1.3 The Sections and Chapters in the Book
  • Reference
  • Conceptualising and Theorising Interdisciplinarity in Research, Policy and Practice
  • 2 Introduction
  • Reference
  • 3 Theoretical Perspectives on Interdisciplinary Mathematics Education
  • 3.1 Introduction to Interdisciplinarity
  • 3.2 Professional Disciplines
  • 3.3 Disciplinarity in Sociocultural Activity Theory
  • 3.4 History of the Disciplinary Nature of Human Praxis
  • 3.5 Physical and Mental Discipline: Forms of Thought and Practice
  • 3.6 Interdisciplinarity: Working Between and Across Disciplines
  • 3.7 Interdisciplinary Power and Conflict
  • 3.8 Transdisciplinarity: Considerations of Dialogism, Heteroglossia, and Voice
  • 3.9 Identities in Disciplinary and Interdisciplinary Practices
  • 3.10 Conclusion: Social Theory for Interdisciplinarity
  • 3.11 Coda
  • References
  • 4 Integration from a Commognitive Perspective: An Experience with Mathematics and Music Students
  • 4.1 Introduction
  • 4.2 Commognition: Thinking as Communication
  • 4.3 The Interdisciplinary Collaboration Experiences
  • 4.3.1 First Experimentation of Interdisciplinary Collaboration
  • 4.3.2 Second Experimentation of Interdisciplinary Collaboration
  • 4.4 Results
  • 4.4.1 About Line Graphs and Music Reading
  • 4.4.2 About Baggies and Gestures
  • 4.5 Discussion
  • References
  • 5 Challenges and Opportunities for a STEM Interdisciplinary Agenda
  • 5.1 Introduction
  • 5.2 Two Australian STEM Initiatives
  • 5.3 Scoping the Nature of STEM Innovation
  • 5.4 The Process of Change
  • 5.4.1 An Increasing Focus on Authentic, Inter-disciplinary Activity
  • 5.4.2 Growing Confidence with Group-Based, Student-Centred Pedagogies.
  • 5.4.3 Professional Learning Through Interactions with 'Other' Such Learners
  • 5.4.4 Collaborative Planning and Implementing of Projects
  • 5.5 Case Studies of Mathematics Within Inter-disciplinary Activity
  • 5.5.1 Case 1: STEM Ed-A Collaborative Cross-Subject Program
  • 5.5.2 Case 2: Whole of Level Design Technology-Led STEM
  • 5.5.3 Case 3: Engaging in Mathematics Through Within-Subject STEM Investigations
  • 5.6 Discussion
  • 5.7 Conclusion
  • 5.8 Coda
  • 5.8.1 The Commonalities in Mathematics Through STEM Despite the Variety of Approaches
  • 5.8.2 The Role of Disciplines
  • 5.8.3 Principles Underpinning Mathematics in Interdisciplinary Settings
  • 5.8.4 The Challenge for Teachers
  • 5.8.5 Conceptual Engagement of Students
  • 5.8.6 The Conditions for Sustainable Innovation
  • References
  • Focus on Cross-Cutting Skills: A Glass Half-Full?
  • 6 Introduction: A Glass Half Full?
  • 6.1 Glass Half Full?
  • 6.2 Description of the Papers in the Section
  • 6.3 The Empty Half of the Glass
  • 6.4 Afterword
  • References
  • 7 Developing Mathematical Reasoning Using a STEM Platform
  • 7.1 Introduction
  • 7.2 Theoretical Framework of the Activity Design
  • 7.2.1 Conduct of the Laboratory
  • 7.2.2 Methods
  • 7.3 Data Analysis
  • 7.3.1 Descriptive Analysis
  • 7.3.2 Inferential Analysis
  • 7.4 In Search of Improving the Learning Experience
  • 7.5 Discussion
  • 7.5.1 Suggestions for Further Research
  • References
  • 8 Quantitative Reasoning and Its Rôle in Interdisciplinarity
  • 8.1 Introduction
  • 8.2 Interdisciplinary STEM: Authentic Teaching and Reasoning Modalities
  • 8.2.1 Complex Systems Reasoning
  • 8.2.2 Model-Based Reasoning
  • 8.2.3 Computational Reasoning
  • 8.2.4 Engineering Design-Based Reasoning
  • 8.2.5 Quantitative Reasoning
  • 8.2.6 Evaluation
  • 8.3 Conclusion
  • References.
  • 9 Modelling and Programming of Digital Video: A Source for the Integration of Mathematics, Engineering, and Technology
  • 9.1 Introduction
  • 9.2 Methods
  • 9.3 The AOLME Project
  • 9.4 Mathematical Modelling
  • 9.4.1 Our Model-Eliciting Activities (MEAs) Framework
  • 9.5 Findings
  • 9.5.1 The Process of Designing
  • 9.5.2 The Process of Modelling with Mathematics
  • 9.5.3 The Process of Implementing
  • 9.6 Discussion
  • References
  • Case Studies in Inter-Disciplinarity: Mathematics as Tool and Mathematics as (Conscious) Generalisation
  • 10 Introduction
  • 10.1 Case Studies in Inter-disciplinarity
  • 10.1.1 The Case Studies
  • 10.1.2 Mathematics as Tool and Mathematics as (Conscious) Generalisation
  • References
  • 11 Mathematics in an Interdisciplinary STEM Course (NLT) in The Netherlands
  • 11.1 Introduction
  • 11.1.1 Background of NLT
  • 11.1.2 Focus of the Study
  • 11.1.3 Research Question
  • 11.2 Conceptual Framework
  • 11.2.1 Method
  • 11.3 Data Analysis
  • 11.4 Results
  • 11.4.1 NLT Curriculum
  • 11.4.2 Teaching Materials
  • 11.4.3 Teachers in NLT
  • 11.4.4 Students
  • 11.5 Summary
  • 11.6 Discussion
  • References
  • 12 Maths Adds up
  • 12.1 Introduction: A New Approach to Teaching Mathematics
  • 12.2 Interdisciplinary Activities: Form and Requirements
  • 12.2.1 Form: Different Specialists Develop the Educational Curriculum Around a Final Outcome
  • 12.2.2 Requirements of Interdisciplinary Activities
  • 12.3 Case Studies
  • 12.3.1 Case Study 1: Create Your Own Package (12-14-Year- Olds)
  • 12.3.2 Case Study 2: Creating Musical Instruments (11-13-Year-Olds)
  • 12.4 Conclusions
  • 12.5 We Encourage You to Try It
  • References
  • 13 The Successful Students STEM Project: A Medium Scale Case Study
  • 13.1 Introduction
  • 13.2 The Program
  • 13.3 Negotiating the University-School Partnerships
  • 13.4 The "STEM Vision Framework".
  • 13.5 Case Studies
  • 13.5.1 Case 1: School J
  • 13.5.2 Case 2: School G
  • 13.5.3 Case 3: School H
  • 13.5.4 Discussion
  • 13.6 Conclusion
  • References
  • 14 "Draw What You See" Transcending the Mathematics Classroom
  • 14.1 Introduction
  • 14.2 Literature
  • 14.3 Context and Task
  • 14.4 Narrative of Experience
  • 14.4.1 Redefining Authority
  • 14.4.2 Redefining Autonomy
  • 14.4.3 Redefining Success
  • 14.4.4 Redefining Relationships with Others
  • 14.5 Discussion and Conclusion
  • References
  • 15 Inter-disciplinary Mathematics: Old Wine in New Bottles?
  • 15.1 Early Inter-disciplinarians and Interdisciplinarity
  • 15.2 Modern Times
  • 15.2.1 Integrative Approaches to Inter-disciplinary Learning
  • 15.2.2 Integration of STEM
  • 15.3 Caveats
  • 15.4 Discussion
  • References
  • Teacher Education and Teacher Development
  • 16 Teacher Education and Teacher Development
  • References
  • 17 Inclusion of Interdisciplinary Approach in the Mathematics Education of Biology Trainee Teachers in Slovakia
  • 17.1 Introduction
  • 17.2 Methods and Instruments
  • 17.2.1 Development of Teaching Material
  • 17.2.2 Mathematical Competencies Assessment
  • 17.2.3 Feedback Obtained in Questionnaire Survey
  • 17.3 Results and Discussion
  • 17.3.1 Worksheet About Human Blood
  • 17.3.2 Mathematical Competence Assessment
  • 17.3.3 Feedback Obtained in Questionnaire Survey
  • 17.4 Conclusion
  • References
  • 18 Creating Academic Teacher Scholars in STEM Education by Preparing Preservice Teachers as Researchers
  • 18.1 Introduction
  • 18.2 Background and Literature
  • 18.3 Participants
  • 18.4 Programme Description
  • 18.4.1 Individualized Research Projects
  • 18.4.2 Methods
  • 18.5 Results and Discussion
  • 18.5.1 Fellows' Beliefs Concerning Stem Education Research
  • 18.5.2 Student Skills of Education Research
  • 18.5.3 Impact on Fellows' Future Teaching.
  • 18.6 Conclusion and Coda
  • References
  • Conclusion to Interdisciplinary Mathematics Education
  • 19 Conclusion to Interdisciplinary Mathematics Education
  • References.