Interdisciplinary Mathematics Education : : The State of the Art and Beyond.

Saved in:
Bibliographic Details
Superior document:ICME-13 Monographs
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:ICME-13 Monographs
Online Access:
Physical Description:1 online resource (294 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5005719213
ctrlnum (MiAaPQ)5005719213
(Au-PeEL)EBL5719213
(OCoLC)1108553598
collection bib_alma
record_format marc
spelling Doig, Brian.
Interdisciplinary Mathematics Education : The State of the Art and Beyond.
1st ed.
Cham : Springer International Publishing AG, 2019.
©2019.
1 online resource (294 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
ICME-13 Monographs
Intro -- Contents -- 1 Introduction to Interdisciplinary Mathematics Education -- 1.1 Origins and Context of This Volume -- 1.2 The State of the Art in 2016: What Next? -- 1.3 The Sections and Chapters in the Book -- Reference -- Conceptualising and Theorising Interdisciplinarity in Research, Policy and Practice -- 2 Introduction -- Reference -- 3 Theoretical Perspectives on Interdisciplinary Mathematics Education -- 3.1 Introduction to Interdisciplinarity -- 3.2 Professional Disciplines -- 3.3 Disciplinarity in Sociocultural Activity Theory -- 3.4 History of the Disciplinary Nature of Human Praxis -- 3.5 Physical and Mental Discipline: Forms of Thought and Practice -- 3.6 Interdisciplinarity: Working Between and Across Disciplines -- 3.7 Interdisciplinary Power and Conflict -- 3.8 Transdisciplinarity: Considerations of Dialogism, Heteroglossia, and Voice -- 3.9 Identities in Disciplinary and Interdisciplinary Practices -- 3.10 Conclusion: Social Theory for Interdisciplinarity -- 3.11 Coda -- References -- 4 Integration from a Commognitive Perspective: An Experience with Mathematics and Music Students -- 4.1 Introduction -- 4.2 Commognition: Thinking as Communication -- 4.3 The Interdisciplinary Collaboration Experiences -- 4.3.1 First Experimentation of Interdisciplinary Collaboration -- 4.3.2 Second Experimentation of Interdisciplinary Collaboration -- 4.4 Results -- 4.4.1 About Line Graphs and Music Reading -- 4.4.2 About Baggies and Gestures -- 4.5 Discussion -- References -- 5 Challenges and Opportunities for a STEM Interdisciplinary Agenda -- 5.1 Introduction -- 5.2 Two Australian STEM Initiatives -- 5.3 Scoping the Nature of STEM Innovation -- 5.4 The Process of Change -- 5.4.1 An Increasing Focus on Authentic, Inter-disciplinary Activity -- 5.4.2 Growing Confidence with Group-Based, Student-Centred Pedagogies.
5.4.3 Professional Learning Through Interactions with 'Other' Such Learners -- 5.4.4 Collaborative Planning and Implementing of Projects -- 5.5 Case Studies of Mathematics Within Inter-disciplinary Activity -- 5.5.1 Case 1: STEM Ed-A Collaborative Cross-Subject Program -- 5.5.2 Case 2: Whole of Level Design Technology-Led STEM -- 5.5.3 Case 3: Engaging in Mathematics Through Within-Subject STEM Investigations -- 5.6 Discussion -- 5.7 Conclusion -- 5.8 Coda -- 5.8.1 The Commonalities in Mathematics Through STEM Despite the Variety of Approaches -- 5.8.2 The Role of Disciplines -- 5.8.3 Principles Underpinning Mathematics in Interdisciplinary Settings -- 5.8.4 The Challenge for Teachers -- 5.8.5 Conceptual Engagement of Students -- 5.8.6 The Conditions for Sustainable Innovation -- References -- Focus on Cross-Cutting Skills: A Glass Half-Full? -- 6 Introduction: A Glass Half Full? -- 6.1 Glass Half Full? -- 6.2 Description of the Papers in the Section -- 6.3 The Empty Half of the Glass -- 6.4 Afterword -- References -- 7 Developing Mathematical Reasoning Using a STEM Platform -- 7.1 Introduction -- 7.2 Theoretical Framework of the Activity Design -- 7.2.1 Conduct of the Laboratory -- 7.2.2 Methods -- 7.3 Data Analysis -- 7.3.1 Descriptive Analysis -- 7.3.2 Inferential Analysis -- 7.4 In Search of Improving the Learning Experience -- 7.5 Discussion -- 7.5.1 Suggestions for Further Research -- References -- 8 Quantitative Reasoning and Its Rôle in Interdisciplinarity -- 8.1 Introduction -- 8.2 Interdisciplinary STEM: Authentic Teaching and Reasoning Modalities -- 8.2.1 Complex Systems Reasoning -- 8.2.2 Model-Based Reasoning -- 8.2.3 Computational Reasoning -- 8.2.4 Engineering Design-Based Reasoning -- 8.2.5 Quantitative Reasoning -- 8.2.6 Evaluation -- 8.3 Conclusion -- References.
9 Modelling and Programming of Digital Video: A Source for the Integration of Mathematics, Engineering, and Technology -- 9.1 Introduction -- 9.2 Methods -- 9.3 The AOLME Project -- 9.4 Mathematical Modelling -- 9.4.1 Our Model-Eliciting Activities (MEAs) Framework -- 9.5 Findings -- 9.5.1 The Process of Designing -- 9.5.2 The Process of Modelling with Mathematics -- 9.5.3 The Process of Implementing -- 9.6 Discussion -- References -- Case Studies in Inter-Disciplinarity: Mathematics as Tool and Mathematics as (Conscious) Generalisation -- 10 Introduction -- 10.1 Case Studies in Inter-disciplinarity -- 10.1.1 The Case Studies -- 10.1.2 Mathematics as Tool and Mathematics as (Conscious) Generalisation -- References -- 11 Mathematics in an Interdisciplinary STEM Course (NLT) in The Netherlands -- 11.1 Introduction -- 11.1.1 Background of NLT -- 11.1.2 Focus of the Study -- 11.1.3 Research Question -- 11.2 Conceptual Framework -- 11.2.1 Method -- 11.3 Data Analysis -- 11.4 Results -- 11.4.1 NLT Curriculum -- 11.4.2 Teaching Materials -- 11.4.3 Teachers in NLT -- 11.4.4 Students -- 11.5 Summary -- 11.6 Discussion -- References -- 12 Maths Adds up -- 12.1 Introduction: A New Approach to Teaching Mathematics -- 12.2 Interdisciplinary Activities: Form and Requirements -- 12.2.1 Form: Different Specialists Develop the Educational Curriculum Around a Final Outcome -- 12.2.2 Requirements of Interdisciplinary Activities -- 12.3 Case Studies -- 12.3.1 Case Study 1: Create Your Own Package (12-14-Year- Olds) -- 12.3.2 Case Study 2: Creating Musical Instruments (11-13-Year-Olds) -- 12.4 Conclusions -- 12.5 We Encourage You to Try It -- References -- 13 The Successful Students STEM Project: A Medium Scale Case Study -- 13.1 Introduction -- 13.2 The Program -- 13.3 Negotiating the University-School Partnerships -- 13.4 The "STEM Vision Framework".
13.5 Case Studies -- 13.5.1 Case 1: School J -- 13.5.2 Case 2: School G -- 13.5.3 Case 3: School H -- 13.5.4 Discussion -- 13.6 Conclusion -- References -- 14 "Draw What You See" Transcending the Mathematics Classroom -- 14.1 Introduction -- 14.2 Literature -- 14.3 Context and Task -- 14.4 Narrative of Experience -- 14.4.1 Redefining Authority -- 14.4.2 Redefining Autonomy -- 14.4.3 Redefining Success -- 14.4.4 Redefining Relationships with Others -- 14.5 Discussion and Conclusion -- References -- 15 Inter-disciplinary Mathematics: Old Wine in New Bottles? -- 15.1 Early Inter-disciplinarians and Interdisciplinarity -- 15.2 Modern Times -- 15.2.1 Integrative Approaches to Inter-disciplinary Learning -- 15.2.2 Integration of STEM -- 15.3 Caveats -- 15.4 Discussion -- References -- Teacher Education and Teacher Development -- 16 Teacher Education and Teacher Development -- References -- 17 Inclusion of Interdisciplinary Approach in the Mathematics Education of Biology Trainee Teachers in Slovakia -- 17.1 Introduction -- 17.2 Methods and Instruments -- 17.2.1 Development of Teaching Material -- 17.2.2 Mathematical Competencies Assessment -- 17.2.3 Feedback Obtained in Questionnaire Survey -- 17.3 Results and Discussion -- 17.3.1 Worksheet About Human Blood -- 17.3.2 Mathematical Competence Assessment -- 17.3.3 Feedback Obtained in Questionnaire Survey -- 17.4 Conclusion -- References -- 18 Creating Academic Teacher Scholars in STEM Education by Preparing Preservice Teachers as Researchers -- 18.1 Introduction -- 18.2 Background and Literature -- 18.3 Participants -- 18.4 Programme Description -- 18.4.1 Individualized Research Projects -- 18.4.2 Methods -- 18.5 Results and Discussion -- 18.5.1 Fellows' Beliefs Concerning Stem Education Research -- 18.5.2 Student Skills of Education Research -- 18.5.3 Impact on Fellows' Future Teaching.
18.6 Conclusion and Coda -- References -- Conclusion to Interdisciplinary Mathematics Education -- 19 Conclusion to Interdisciplinary Mathematics Education -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Williams, Julian.
Swanson, David.
Borromeo Ferri, Rita.
Drake, Pat.
Print version: Doig, Brian Interdisciplinary Mathematics Education Cham : Springer International Publishing AG,c2019 9783030110659
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5719213 Click to View
language English
format eBook
author Doig, Brian.
spellingShingle Doig, Brian.
Interdisciplinary Mathematics Education : The State of the Art and Beyond.
ICME-13 Monographs
Intro -- Contents -- 1 Introduction to Interdisciplinary Mathematics Education -- 1.1 Origins and Context of This Volume -- 1.2 The State of the Art in 2016: What Next? -- 1.3 The Sections and Chapters in the Book -- Reference -- Conceptualising and Theorising Interdisciplinarity in Research, Policy and Practice -- 2 Introduction -- Reference -- 3 Theoretical Perspectives on Interdisciplinary Mathematics Education -- 3.1 Introduction to Interdisciplinarity -- 3.2 Professional Disciplines -- 3.3 Disciplinarity in Sociocultural Activity Theory -- 3.4 History of the Disciplinary Nature of Human Praxis -- 3.5 Physical and Mental Discipline: Forms of Thought and Practice -- 3.6 Interdisciplinarity: Working Between and Across Disciplines -- 3.7 Interdisciplinary Power and Conflict -- 3.8 Transdisciplinarity: Considerations of Dialogism, Heteroglossia, and Voice -- 3.9 Identities in Disciplinary and Interdisciplinary Practices -- 3.10 Conclusion: Social Theory for Interdisciplinarity -- 3.11 Coda -- References -- 4 Integration from a Commognitive Perspective: An Experience with Mathematics and Music Students -- 4.1 Introduction -- 4.2 Commognition: Thinking as Communication -- 4.3 The Interdisciplinary Collaboration Experiences -- 4.3.1 First Experimentation of Interdisciplinary Collaboration -- 4.3.2 Second Experimentation of Interdisciplinary Collaboration -- 4.4 Results -- 4.4.1 About Line Graphs and Music Reading -- 4.4.2 About Baggies and Gestures -- 4.5 Discussion -- References -- 5 Challenges and Opportunities for a STEM Interdisciplinary Agenda -- 5.1 Introduction -- 5.2 Two Australian STEM Initiatives -- 5.3 Scoping the Nature of STEM Innovation -- 5.4 The Process of Change -- 5.4.1 An Increasing Focus on Authentic, Inter-disciplinary Activity -- 5.4.2 Growing Confidence with Group-Based, Student-Centred Pedagogies.
5.4.3 Professional Learning Through Interactions with 'Other' Such Learners -- 5.4.4 Collaborative Planning and Implementing of Projects -- 5.5 Case Studies of Mathematics Within Inter-disciplinary Activity -- 5.5.1 Case 1: STEM Ed-A Collaborative Cross-Subject Program -- 5.5.2 Case 2: Whole of Level Design Technology-Led STEM -- 5.5.3 Case 3: Engaging in Mathematics Through Within-Subject STEM Investigations -- 5.6 Discussion -- 5.7 Conclusion -- 5.8 Coda -- 5.8.1 The Commonalities in Mathematics Through STEM Despite the Variety of Approaches -- 5.8.2 The Role of Disciplines -- 5.8.3 Principles Underpinning Mathematics in Interdisciplinary Settings -- 5.8.4 The Challenge for Teachers -- 5.8.5 Conceptual Engagement of Students -- 5.8.6 The Conditions for Sustainable Innovation -- References -- Focus on Cross-Cutting Skills: A Glass Half-Full? -- 6 Introduction: A Glass Half Full? -- 6.1 Glass Half Full? -- 6.2 Description of the Papers in the Section -- 6.3 The Empty Half of the Glass -- 6.4 Afterword -- References -- 7 Developing Mathematical Reasoning Using a STEM Platform -- 7.1 Introduction -- 7.2 Theoretical Framework of the Activity Design -- 7.2.1 Conduct of the Laboratory -- 7.2.2 Methods -- 7.3 Data Analysis -- 7.3.1 Descriptive Analysis -- 7.3.2 Inferential Analysis -- 7.4 In Search of Improving the Learning Experience -- 7.5 Discussion -- 7.5.1 Suggestions for Further Research -- References -- 8 Quantitative Reasoning and Its Rôle in Interdisciplinarity -- 8.1 Introduction -- 8.2 Interdisciplinary STEM: Authentic Teaching and Reasoning Modalities -- 8.2.1 Complex Systems Reasoning -- 8.2.2 Model-Based Reasoning -- 8.2.3 Computational Reasoning -- 8.2.4 Engineering Design-Based Reasoning -- 8.2.5 Quantitative Reasoning -- 8.2.6 Evaluation -- 8.3 Conclusion -- References.
9 Modelling and Programming of Digital Video: A Source for the Integration of Mathematics, Engineering, and Technology -- 9.1 Introduction -- 9.2 Methods -- 9.3 The AOLME Project -- 9.4 Mathematical Modelling -- 9.4.1 Our Model-Eliciting Activities (MEAs) Framework -- 9.5 Findings -- 9.5.1 The Process of Designing -- 9.5.2 The Process of Modelling with Mathematics -- 9.5.3 The Process of Implementing -- 9.6 Discussion -- References -- Case Studies in Inter-Disciplinarity: Mathematics as Tool and Mathematics as (Conscious) Generalisation -- 10 Introduction -- 10.1 Case Studies in Inter-disciplinarity -- 10.1.1 The Case Studies -- 10.1.2 Mathematics as Tool and Mathematics as (Conscious) Generalisation -- References -- 11 Mathematics in an Interdisciplinary STEM Course (NLT) in The Netherlands -- 11.1 Introduction -- 11.1.1 Background of NLT -- 11.1.2 Focus of the Study -- 11.1.3 Research Question -- 11.2 Conceptual Framework -- 11.2.1 Method -- 11.3 Data Analysis -- 11.4 Results -- 11.4.1 NLT Curriculum -- 11.4.2 Teaching Materials -- 11.4.3 Teachers in NLT -- 11.4.4 Students -- 11.5 Summary -- 11.6 Discussion -- References -- 12 Maths Adds up -- 12.1 Introduction: A New Approach to Teaching Mathematics -- 12.2 Interdisciplinary Activities: Form and Requirements -- 12.2.1 Form: Different Specialists Develop the Educational Curriculum Around a Final Outcome -- 12.2.2 Requirements of Interdisciplinary Activities -- 12.3 Case Studies -- 12.3.1 Case Study 1: Create Your Own Package (12-14-Year- Olds) -- 12.3.2 Case Study 2: Creating Musical Instruments (11-13-Year-Olds) -- 12.4 Conclusions -- 12.5 We Encourage You to Try It -- References -- 13 The Successful Students STEM Project: A Medium Scale Case Study -- 13.1 Introduction -- 13.2 The Program -- 13.3 Negotiating the University-School Partnerships -- 13.4 The "STEM Vision Framework".
13.5 Case Studies -- 13.5.1 Case 1: School J -- 13.5.2 Case 2: School G -- 13.5.3 Case 3: School H -- 13.5.4 Discussion -- 13.6 Conclusion -- References -- 14 "Draw What You See" Transcending the Mathematics Classroom -- 14.1 Introduction -- 14.2 Literature -- 14.3 Context and Task -- 14.4 Narrative of Experience -- 14.4.1 Redefining Authority -- 14.4.2 Redefining Autonomy -- 14.4.3 Redefining Success -- 14.4.4 Redefining Relationships with Others -- 14.5 Discussion and Conclusion -- References -- 15 Inter-disciplinary Mathematics: Old Wine in New Bottles? -- 15.1 Early Inter-disciplinarians and Interdisciplinarity -- 15.2 Modern Times -- 15.2.1 Integrative Approaches to Inter-disciplinary Learning -- 15.2.2 Integration of STEM -- 15.3 Caveats -- 15.4 Discussion -- References -- Teacher Education and Teacher Development -- 16 Teacher Education and Teacher Development -- References -- 17 Inclusion of Interdisciplinary Approach in the Mathematics Education of Biology Trainee Teachers in Slovakia -- 17.1 Introduction -- 17.2 Methods and Instruments -- 17.2.1 Development of Teaching Material -- 17.2.2 Mathematical Competencies Assessment -- 17.2.3 Feedback Obtained in Questionnaire Survey -- 17.3 Results and Discussion -- 17.3.1 Worksheet About Human Blood -- 17.3.2 Mathematical Competence Assessment -- 17.3.3 Feedback Obtained in Questionnaire Survey -- 17.4 Conclusion -- References -- 18 Creating Academic Teacher Scholars in STEM Education by Preparing Preservice Teachers as Researchers -- 18.1 Introduction -- 18.2 Background and Literature -- 18.3 Participants -- 18.4 Programme Description -- 18.4.1 Individualized Research Projects -- 18.4.2 Methods -- 18.5 Results and Discussion -- 18.5.1 Fellows' Beliefs Concerning Stem Education Research -- 18.5.2 Student Skills of Education Research -- 18.5.3 Impact on Fellows' Future Teaching.
18.6 Conclusion and Coda -- References -- Conclusion to Interdisciplinary Mathematics Education -- 19 Conclusion to Interdisciplinary Mathematics Education -- References.
author_facet Doig, Brian.
Williams, Julian.
Swanson, David.
Borromeo Ferri, Rita.
Drake, Pat.
author_variant b d bd
author2 Williams, Julian.
Swanson, David.
Borromeo Ferri, Rita.
Drake, Pat.
author2_variant j w jw
d s ds
f r b fr frb
p d pd
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Doig, Brian.
title Interdisciplinary Mathematics Education : The State of the Art and Beyond.
title_sub The State of the Art and Beyond.
title_full Interdisciplinary Mathematics Education : The State of the Art and Beyond.
title_fullStr Interdisciplinary Mathematics Education : The State of the Art and Beyond.
title_full_unstemmed Interdisciplinary Mathematics Education : The State of the Art and Beyond.
title_auth Interdisciplinary Mathematics Education : The State of the Art and Beyond.
title_new Interdisciplinary Mathematics Education :
title_sort interdisciplinary mathematics education : the state of the art and beyond.
series ICME-13 Monographs
series2 ICME-13 Monographs
publisher Springer International Publishing AG,
publishDate 2019
physical 1 online resource (294 pages)
edition 1st ed.
contents Intro -- Contents -- 1 Introduction to Interdisciplinary Mathematics Education -- 1.1 Origins and Context of This Volume -- 1.2 The State of the Art in 2016: What Next? -- 1.3 The Sections and Chapters in the Book -- Reference -- Conceptualising and Theorising Interdisciplinarity in Research, Policy and Practice -- 2 Introduction -- Reference -- 3 Theoretical Perspectives on Interdisciplinary Mathematics Education -- 3.1 Introduction to Interdisciplinarity -- 3.2 Professional Disciplines -- 3.3 Disciplinarity in Sociocultural Activity Theory -- 3.4 History of the Disciplinary Nature of Human Praxis -- 3.5 Physical and Mental Discipline: Forms of Thought and Practice -- 3.6 Interdisciplinarity: Working Between and Across Disciplines -- 3.7 Interdisciplinary Power and Conflict -- 3.8 Transdisciplinarity: Considerations of Dialogism, Heteroglossia, and Voice -- 3.9 Identities in Disciplinary and Interdisciplinary Practices -- 3.10 Conclusion: Social Theory for Interdisciplinarity -- 3.11 Coda -- References -- 4 Integration from a Commognitive Perspective: An Experience with Mathematics and Music Students -- 4.1 Introduction -- 4.2 Commognition: Thinking as Communication -- 4.3 The Interdisciplinary Collaboration Experiences -- 4.3.1 First Experimentation of Interdisciplinary Collaboration -- 4.3.2 Second Experimentation of Interdisciplinary Collaboration -- 4.4 Results -- 4.4.1 About Line Graphs and Music Reading -- 4.4.2 About Baggies and Gestures -- 4.5 Discussion -- References -- 5 Challenges and Opportunities for a STEM Interdisciplinary Agenda -- 5.1 Introduction -- 5.2 Two Australian STEM Initiatives -- 5.3 Scoping the Nature of STEM Innovation -- 5.4 The Process of Change -- 5.4.1 An Increasing Focus on Authentic, Inter-disciplinary Activity -- 5.4.2 Growing Confidence with Group-Based, Student-Centred Pedagogies.
5.4.3 Professional Learning Through Interactions with 'Other' Such Learners -- 5.4.4 Collaborative Planning and Implementing of Projects -- 5.5 Case Studies of Mathematics Within Inter-disciplinary Activity -- 5.5.1 Case 1: STEM Ed-A Collaborative Cross-Subject Program -- 5.5.2 Case 2: Whole of Level Design Technology-Led STEM -- 5.5.3 Case 3: Engaging in Mathematics Through Within-Subject STEM Investigations -- 5.6 Discussion -- 5.7 Conclusion -- 5.8 Coda -- 5.8.1 The Commonalities in Mathematics Through STEM Despite the Variety of Approaches -- 5.8.2 The Role of Disciplines -- 5.8.3 Principles Underpinning Mathematics in Interdisciplinary Settings -- 5.8.4 The Challenge for Teachers -- 5.8.5 Conceptual Engagement of Students -- 5.8.6 The Conditions for Sustainable Innovation -- References -- Focus on Cross-Cutting Skills: A Glass Half-Full? -- 6 Introduction: A Glass Half Full? -- 6.1 Glass Half Full? -- 6.2 Description of the Papers in the Section -- 6.3 The Empty Half of the Glass -- 6.4 Afterword -- References -- 7 Developing Mathematical Reasoning Using a STEM Platform -- 7.1 Introduction -- 7.2 Theoretical Framework of the Activity Design -- 7.2.1 Conduct of the Laboratory -- 7.2.2 Methods -- 7.3 Data Analysis -- 7.3.1 Descriptive Analysis -- 7.3.2 Inferential Analysis -- 7.4 In Search of Improving the Learning Experience -- 7.5 Discussion -- 7.5.1 Suggestions for Further Research -- References -- 8 Quantitative Reasoning and Its Rôle in Interdisciplinarity -- 8.1 Introduction -- 8.2 Interdisciplinary STEM: Authentic Teaching and Reasoning Modalities -- 8.2.1 Complex Systems Reasoning -- 8.2.2 Model-Based Reasoning -- 8.2.3 Computational Reasoning -- 8.2.4 Engineering Design-Based Reasoning -- 8.2.5 Quantitative Reasoning -- 8.2.6 Evaluation -- 8.3 Conclusion -- References.
9 Modelling and Programming of Digital Video: A Source for the Integration of Mathematics, Engineering, and Technology -- 9.1 Introduction -- 9.2 Methods -- 9.3 The AOLME Project -- 9.4 Mathematical Modelling -- 9.4.1 Our Model-Eliciting Activities (MEAs) Framework -- 9.5 Findings -- 9.5.1 The Process of Designing -- 9.5.2 The Process of Modelling with Mathematics -- 9.5.3 The Process of Implementing -- 9.6 Discussion -- References -- Case Studies in Inter-Disciplinarity: Mathematics as Tool and Mathematics as (Conscious) Generalisation -- 10 Introduction -- 10.1 Case Studies in Inter-disciplinarity -- 10.1.1 The Case Studies -- 10.1.2 Mathematics as Tool and Mathematics as (Conscious) Generalisation -- References -- 11 Mathematics in an Interdisciplinary STEM Course (NLT) in The Netherlands -- 11.1 Introduction -- 11.1.1 Background of NLT -- 11.1.2 Focus of the Study -- 11.1.3 Research Question -- 11.2 Conceptual Framework -- 11.2.1 Method -- 11.3 Data Analysis -- 11.4 Results -- 11.4.1 NLT Curriculum -- 11.4.2 Teaching Materials -- 11.4.3 Teachers in NLT -- 11.4.4 Students -- 11.5 Summary -- 11.6 Discussion -- References -- 12 Maths Adds up -- 12.1 Introduction: A New Approach to Teaching Mathematics -- 12.2 Interdisciplinary Activities: Form and Requirements -- 12.2.1 Form: Different Specialists Develop the Educational Curriculum Around a Final Outcome -- 12.2.2 Requirements of Interdisciplinary Activities -- 12.3 Case Studies -- 12.3.1 Case Study 1: Create Your Own Package (12-14-Year- Olds) -- 12.3.2 Case Study 2: Creating Musical Instruments (11-13-Year-Olds) -- 12.4 Conclusions -- 12.5 We Encourage You to Try It -- References -- 13 The Successful Students STEM Project: A Medium Scale Case Study -- 13.1 Introduction -- 13.2 The Program -- 13.3 Negotiating the University-School Partnerships -- 13.4 The "STEM Vision Framework".
13.5 Case Studies -- 13.5.1 Case 1: School J -- 13.5.2 Case 2: School G -- 13.5.3 Case 3: School H -- 13.5.4 Discussion -- 13.6 Conclusion -- References -- 14 "Draw What You See" Transcending the Mathematics Classroom -- 14.1 Introduction -- 14.2 Literature -- 14.3 Context and Task -- 14.4 Narrative of Experience -- 14.4.1 Redefining Authority -- 14.4.2 Redefining Autonomy -- 14.4.3 Redefining Success -- 14.4.4 Redefining Relationships with Others -- 14.5 Discussion and Conclusion -- References -- 15 Inter-disciplinary Mathematics: Old Wine in New Bottles? -- 15.1 Early Inter-disciplinarians and Interdisciplinarity -- 15.2 Modern Times -- 15.2.1 Integrative Approaches to Inter-disciplinary Learning -- 15.2.2 Integration of STEM -- 15.3 Caveats -- 15.4 Discussion -- References -- Teacher Education and Teacher Development -- 16 Teacher Education and Teacher Development -- References -- 17 Inclusion of Interdisciplinary Approach in the Mathematics Education of Biology Trainee Teachers in Slovakia -- 17.1 Introduction -- 17.2 Methods and Instruments -- 17.2.1 Development of Teaching Material -- 17.2.2 Mathematical Competencies Assessment -- 17.2.3 Feedback Obtained in Questionnaire Survey -- 17.3 Results and Discussion -- 17.3.1 Worksheet About Human Blood -- 17.3.2 Mathematical Competence Assessment -- 17.3.3 Feedback Obtained in Questionnaire Survey -- 17.4 Conclusion -- References -- 18 Creating Academic Teacher Scholars in STEM Education by Preparing Preservice Teachers as Researchers -- 18.1 Introduction -- 18.2 Background and Literature -- 18.3 Participants -- 18.4 Programme Description -- 18.4.1 Individualized Research Projects -- 18.4.2 Methods -- 18.5 Results and Discussion -- 18.5.1 Fellows' Beliefs Concerning Stem Education Research -- 18.5.2 Student Skills of Education Research -- 18.5.3 Impact on Fellows' Future Teaching.
18.6 Conclusion and Coda -- References -- Conclusion to Interdisciplinary Mathematics Education -- 19 Conclusion to Interdisciplinary Mathematics Education -- References.
isbn 9783030110666
9783030110659
callnumber-first Q - Science
callnumber-subject QA - Mathematics
callnumber-label QA10
callnumber-sort QA 210.92 220
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5719213
illustrated Not Illustrated
oclc_num 1108553598
work_keys_str_mv AT doigbrian interdisciplinarymathematicseducationthestateoftheartandbeyond
AT williamsjulian interdisciplinarymathematicseducationthestateoftheartandbeyond
AT swansondavid interdisciplinarymathematicseducationthestateoftheartandbeyond
AT borromeoferririta interdisciplinarymathematicseducationthestateoftheartandbeyond
AT drakepat interdisciplinarymathematicseducationthestateoftheartandbeyond
status_str n
ids_txt_mv (MiAaPQ)5005719213
(Au-PeEL)EBL5719213
(OCoLC)1108553598
carrierType_str_mv cr
hierarchy_parent_title ICME-13 Monographs
is_hierarchy_title Interdisciplinary Mathematics Education : The State of the Art and Beyond.
container_title ICME-13 Monographs
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331055678619648
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10005nam a22004933i 4500</leader><controlfield tag="001">5005719213</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073832.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2019 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030110666</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030110659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5005719213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL5719213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1108553598</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA10.92-20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Doig, Brian.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interdisciplinary Mathematics Education :</subfield><subfield code="b">The State of the Art and Beyond.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (294 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ICME-13 Monographs</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Contents -- 1 Introduction to Interdisciplinary Mathematics Education -- 1.1 Origins and Context of This Volume -- 1.2 The State of the Art in 2016: What Next? -- 1.3 The Sections and Chapters in the Book -- Reference -- Conceptualising and Theorising Interdisciplinarity in Research, Policy and Practice -- 2 Introduction -- Reference -- 3 Theoretical Perspectives on Interdisciplinary Mathematics Education -- 3.1 Introduction to Interdisciplinarity -- 3.2 Professional Disciplines -- 3.3 Disciplinarity in Sociocultural Activity Theory -- 3.4 History of the Disciplinary Nature of Human Praxis -- 3.5 Physical and Mental Discipline: Forms of Thought and Practice -- 3.6 Interdisciplinarity: Working Between and Across Disciplines -- 3.7 Interdisciplinary Power and Conflict -- 3.8 Transdisciplinarity: Considerations of Dialogism, Heteroglossia, and Voice -- 3.9 Identities in Disciplinary and Interdisciplinary Practices -- 3.10 Conclusion: Social Theory for Interdisciplinarity -- 3.11 Coda -- References -- 4 Integration from a Commognitive Perspective: An Experience with Mathematics and Music Students -- 4.1 Introduction -- 4.2 Commognition: Thinking as Communication -- 4.3 The Interdisciplinary Collaboration Experiences -- 4.3.1 First Experimentation of Interdisciplinary Collaboration -- 4.3.2 Second Experimentation of Interdisciplinary Collaboration -- 4.4 Results -- 4.4.1 About Line Graphs and Music Reading -- 4.4.2 About Baggies and Gestures -- 4.5 Discussion -- References -- 5 Challenges and Opportunities for a STEM Interdisciplinary Agenda -- 5.1 Introduction -- 5.2 Two Australian STEM Initiatives -- 5.3 Scoping the Nature of STEM Innovation -- 5.4 The Process of Change -- 5.4.1 An Increasing Focus on Authentic, Inter-disciplinary Activity -- 5.4.2 Growing Confidence with Group-Based, Student-Centred Pedagogies.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.3 Professional Learning Through Interactions with 'Other' Such Learners -- 5.4.4 Collaborative Planning and Implementing of Projects -- 5.5 Case Studies of Mathematics Within Inter-disciplinary Activity -- 5.5.1 Case 1: STEM Ed-A Collaborative Cross-Subject Program -- 5.5.2 Case 2: Whole of Level Design Technology-Led STEM -- 5.5.3 Case 3: Engaging in Mathematics Through Within-Subject STEM Investigations -- 5.6 Discussion -- 5.7 Conclusion -- 5.8 Coda -- 5.8.1 The Commonalities in Mathematics Through STEM Despite the Variety of Approaches -- 5.8.2 The Role of Disciplines -- 5.8.3 Principles Underpinning Mathematics in Interdisciplinary Settings -- 5.8.4 The Challenge for Teachers -- 5.8.5 Conceptual Engagement of Students -- 5.8.6 The Conditions for Sustainable Innovation -- References -- Focus on Cross-Cutting Skills: A Glass Half-Full? -- 6 Introduction: A Glass Half Full? -- 6.1 Glass Half Full? -- 6.2 Description of the Papers in the Section -- 6.3 The Empty Half of the Glass -- 6.4 Afterword -- References -- 7 Developing Mathematical Reasoning Using a STEM Platform -- 7.1 Introduction -- 7.2 Theoretical Framework of the Activity Design -- 7.2.1 Conduct of the Laboratory -- 7.2.2 Methods -- 7.3 Data Analysis -- 7.3.1 Descriptive Analysis -- 7.3.2 Inferential Analysis -- 7.4 In Search of Improving the Learning Experience -- 7.5 Discussion -- 7.5.1 Suggestions for Further Research -- References -- 8 Quantitative Reasoning and Its Rôle in Interdisciplinarity -- 8.1 Introduction -- 8.2 Interdisciplinary STEM: Authentic Teaching and Reasoning Modalities -- 8.2.1 Complex Systems Reasoning -- 8.2.2 Model-Based Reasoning -- 8.2.3 Computational Reasoning -- 8.2.4 Engineering Design-Based Reasoning -- 8.2.5 Quantitative Reasoning -- 8.2.6 Evaluation -- 8.3 Conclusion -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9 Modelling and Programming of Digital Video: A Source for the Integration of Mathematics, Engineering, and Technology -- 9.1 Introduction -- 9.2 Methods -- 9.3 The AOLME Project -- 9.4 Mathematical Modelling -- 9.4.1 Our Model-Eliciting Activities (MEAs) Framework -- 9.5 Findings -- 9.5.1 The Process of Designing -- 9.5.2 The Process of Modelling with Mathematics -- 9.5.3 The Process of Implementing -- 9.6 Discussion -- References -- Case Studies in Inter-Disciplinarity: Mathematics as Tool and Mathematics as (Conscious) Generalisation -- 10 Introduction -- 10.1 Case Studies in Inter-disciplinarity -- 10.1.1 The Case Studies -- 10.1.2 Mathematics as Tool and Mathematics as (Conscious) Generalisation -- References -- 11 Mathematics in an Interdisciplinary STEM Course (NLT) in The Netherlands -- 11.1 Introduction -- 11.1.1 Background of NLT -- 11.1.2 Focus of the Study -- 11.1.3 Research Question -- 11.2 Conceptual Framework -- 11.2.1 Method -- 11.3 Data Analysis -- 11.4 Results -- 11.4.1 NLT Curriculum -- 11.4.2 Teaching Materials -- 11.4.3 Teachers in NLT -- 11.4.4 Students -- 11.5 Summary -- 11.6 Discussion -- References -- 12 Maths Adds up -- 12.1 Introduction: A New Approach to Teaching Mathematics -- 12.2 Interdisciplinary Activities: Form and Requirements -- 12.2.1 Form: Different Specialists Develop the Educational Curriculum Around a Final Outcome -- 12.2.2 Requirements of Interdisciplinary Activities -- 12.3 Case Studies -- 12.3.1 Case Study 1: Create Your Own Package (12-14-Year- Olds) -- 12.3.2 Case Study 2: Creating Musical Instruments (11-13-Year-Olds) -- 12.4 Conclusions -- 12.5 We Encourage You to Try It -- References -- 13 The Successful Students STEM Project: A Medium Scale Case Study -- 13.1 Introduction -- 13.2 The Program -- 13.3 Negotiating the University-School Partnerships -- 13.4 The "STEM Vision Framework".</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.5 Case Studies -- 13.5.1 Case 1: School J -- 13.5.2 Case 2: School G -- 13.5.3 Case 3: School H -- 13.5.4 Discussion -- 13.6 Conclusion -- References -- 14 "Draw What You See" Transcending the Mathematics Classroom -- 14.1 Introduction -- 14.2 Literature -- 14.3 Context and Task -- 14.4 Narrative of Experience -- 14.4.1 Redefining Authority -- 14.4.2 Redefining Autonomy -- 14.4.3 Redefining Success -- 14.4.4 Redefining Relationships with Others -- 14.5 Discussion and Conclusion -- References -- 15 Inter-disciplinary Mathematics: Old Wine in New Bottles? -- 15.1 Early Inter-disciplinarians and Interdisciplinarity -- 15.2 Modern Times -- 15.2.1 Integrative Approaches to Inter-disciplinary Learning -- 15.2.2 Integration of STEM -- 15.3 Caveats -- 15.4 Discussion -- References -- Teacher Education and Teacher Development -- 16 Teacher Education and Teacher Development -- References -- 17 Inclusion of Interdisciplinary Approach in the Mathematics Education of Biology Trainee Teachers in Slovakia -- 17.1 Introduction -- 17.2 Methods and Instruments -- 17.2.1 Development of Teaching Material -- 17.2.2 Mathematical Competencies Assessment -- 17.2.3 Feedback Obtained in Questionnaire Survey -- 17.3 Results and Discussion -- 17.3.1 Worksheet About Human Blood -- 17.3.2 Mathematical Competence Assessment -- 17.3.3 Feedback Obtained in Questionnaire Survey -- 17.4 Conclusion -- References -- 18 Creating Academic Teacher Scholars in STEM Education by Preparing Preservice Teachers as Researchers -- 18.1 Introduction -- 18.2 Background and Literature -- 18.3 Participants -- 18.4 Programme Description -- 18.4.1 Individualized Research Projects -- 18.4.2 Methods -- 18.5 Results and Discussion -- 18.5.1 Fellows' Beliefs Concerning Stem Education Research -- 18.5.2 Student Skills of Education Research -- 18.5.3 Impact on Fellows' Future Teaching.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">18.6 Conclusion and Coda -- References -- Conclusion to Interdisciplinary Mathematics Education -- 19 Conclusion to Interdisciplinary Mathematics Education -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, Julian.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swanson, David.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borromeo Ferri, Rita.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Drake, Pat.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Doig, Brian</subfield><subfield code="t">Interdisciplinary Mathematics Education</subfield><subfield code="d">Cham : Springer International Publishing AG,c2019</subfield><subfield code="z">9783030110659</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">ICME-13 Monographs</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5719213</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>