Interdisciplinary Mathematics Education : : The State of the Art and Beyond.

Saved in:
Bibliographic Details
Superior document:ICME-13 Monographs
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:ICME-13 Monographs
Online Access:
Physical Description:1 online resource (294 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 10005nam a22004933i 4500
001 5005719213
003 MiAaPQ
005 20240229073832.0
006 m o d |
007 cr cnu||||||||
008 240229s2019 xx o ||||0 eng d
020 |a 9783030110666  |q (electronic bk.) 
020 |z 9783030110659 
035 |a (MiAaPQ)5005719213 
035 |a (Au-PeEL)EBL5719213 
035 |a (OCoLC)1108553598 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a QA10.92-20 
100 1 |a Doig, Brian. 
245 1 0 |a Interdisciplinary Mathematics Education :  |b The State of the Art and Beyond. 
250 |a 1st ed. 
264 1 |a Cham :  |b Springer International Publishing AG,  |c 2019. 
264 4 |c ©2019. 
300 |a 1 online resource (294 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a ICME-13 Monographs 
505 0 |a Intro -- Contents -- 1 Introduction to Interdisciplinary Mathematics Education -- 1.1 Origins and Context of This Volume -- 1.2 The State of the Art in 2016: What Next? -- 1.3 The Sections and Chapters in the Book -- Reference -- Conceptualising and Theorising Interdisciplinarity in Research, Policy and Practice -- 2 Introduction -- Reference -- 3 Theoretical Perspectives on Interdisciplinary Mathematics Education -- 3.1 Introduction to Interdisciplinarity -- 3.2 Professional Disciplines -- 3.3 Disciplinarity in Sociocultural Activity Theory -- 3.4 History of the Disciplinary Nature of Human Praxis -- 3.5 Physical and Mental Discipline: Forms of Thought and Practice -- 3.6 Interdisciplinarity: Working Between and Across Disciplines -- 3.7 Interdisciplinary Power and Conflict -- 3.8 Transdisciplinarity: Considerations of Dialogism, Heteroglossia, and Voice -- 3.9 Identities in Disciplinary and Interdisciplinary Practices -- 3.10 Conclusion: Social Theory for Interdisciplinarity -- 3.11 Coda -- References -- 4 Integration from a Commognitive Perspective: An Experience with Mathematics and Music Students -- 4.1 Introduction -- 4.2 Commognition: Thinking as Communication -- 4.3 The Interdisciplinary Collaboration Experiences -- 4.3.1 First Experimentation of Interdisciplinary Collaboration -- 4.3.2 Second Experimentation of Interdisciplinary Collaboration -- 4.4 Results -- 4.4.1 About Line Graphs and Music Reading -- 4.4.2 About Baggies and Gestures -- 4.5 Discussion -- References -- 5 Challenges and Opportunities for a STEM Interdisciplinary Agenda -- 5.1 Introduction -- 5.2 Two Australian STEM Initiatives -- 5.3 Scoping the Nature of STEM Innovation -- 5.4 The Process of Change -- 5.4.1 An Increasing Focus on Authentic, Inter-disciplinary Activity -- 5.4.2 Growing Confidence with Group-Based, Student-Centred Pedagogies. 
505 8 |a 5.4.3 Professional Learning Through Interactions with 'Other' Such Learners -- 5.4.4 Collaborative Planning and Implementing of Projects -- 5.5 Case Studies of Mathematics Within Inter-disciplinary Activity -- 5.5.1 Case 1: STEM Ed-A Collaborative Cross-Subject Program -- 5.5.2 Case 2: Whole of Level Design Technology-Led STEM -- 5.5.3 Case 3: Engaging in Mathematics Through Within-Subject STEM Investigations -- 5.6 Discussion -- 5.7 Conclusion -- 5.8 Coda -- 5.8.1 The Commonalities in Mathematics Through STEM Despite the Variety of Approaches -- 5.8.2 The Role of Disciplines -- 5.8.3 Principles Underpinning Mathematics in Interdisciplinary Settings -- 5.8.4 The Challenge for Teachers -- 5.8.5 Conceptual Engagement of Students -- 5.8.6 The Conditions for Sustainable Innovation -- References -- Focus on Cross-Cutting Skills: A Glass Half-Full? -- 6 Introduction: A Glass Half Full? -- 6.1 Glass Half Full? -- 6.2 Description of the Papers in the Section -- 6.3 The Empty Half of the Glass -- 6.4 Afterword -- References -- 7 Developing Mathematical Reasoning Using a STEM Platform -- 7.1 Introduction -- 7.2 Theoretical Framework of the Activity Design -- 7.2.1 Conduct of the Laboratory -- 7.2.2 Methods -- 7.3 Data Analysis -- 7.3.1 Descriptive Analysis -- 7.3.2 Inferential Analysis -- 7.4 In Search of Improving the Learning Experience -- 7.5 Discussion -- 7.5.1 Suggestions for Further Research -- References -- 8 Quantitative Reasoning and Its Rôle in Interdisciplinarity -- 8.1 Introduction -- 8.2 Interdisciplinary STEM: Authentic Teaching and Reasoning Modalities -- 8.2.1 Complex Systems Reasoning -- 8.2.2 Model-Based Reasoning -- 8.2.3 Computational Reasoning -- 8.2.4 Engineering Design-Based Reasoning -- 8.2.5 Quantitative Reasoning -- 8.2.6 Evaluation -- 8.3 Conclusion -- References. 
505 8 |a 9 Modelling and Programming of Digital Video: A Source for the Integration of Mathematics, Engineering, and Technology -- 9.1 Introduction -- 9.2 Methods -- 9.3 The AOLME Project -- 9.4 Mathematical Modelling -- 9.4.1 Our Model-Eliciting Activities (MEAs) Framework -- 9.5 Findings -- 9.5.1 The Process of Designing -- 9.5.2 The Process of Modelling with Mathematics -- 9.5.3 The Process of Implementing -- 9.6 Discussion -- References -- Case Studies in Inter-Disciplinarity: Mathematics as Tool and Mathematics as (Conscious) Generalisation -- 10 Introduction -- 10.1 Case Studies in Inter-disciplinarity -- 10.1.1 The Case Studies -- 10.1.2 Mathematics as Tool and Mathematics as (Conscious) Generalisation -- References -- 11 Mathematics in an Interdisciplinary STEM Course (NLT) in The Netherlands -- 11.1 Introduction -- 11.1.1 Background of NLT -- 11.1.2 Focus of the Study -- 11.1.3 Research Question -- 11.2 Conceptual Framework -- 11.2.1 Method -- 11.3 Data Analysis -- 11.4 Results -- 11.4.1 NLT Curriculum -- 11.4.2 Teaching Materials -- 11.4.3 Teachers in NLT -- 11.4.4 Students -- 11.5 Summary -- 11.6 Discussion -- References -- 12 Maths Adds up -- 12.1 Introduction: A New Approach to Teaching Mathematics -- 12.2 Interdisciplinary Activities: Form and Requirements -- 12.2.1 Form: Different Specialists Develop the Educational Curriculum Around a Final Outcome -- 12.2.2 Requirements of Interdisciplinary Activities -- 12.3 Case Studies -- 12.3.1 Case Study 1: Create Your Own Package (12-14-Year- Olds) -- 12.3.2 Case Study 2: Creating Musical Instruments (11-13-Year-Olds) -- 12.4 Conclusions -- 12.5 We Encourage You to Try It -- References -- 13 The Successful Students STEM Project: A Medium Scale Case Study -- 13.1 Introduction -- 13.2 The Program -- 13.3 Negotiating the University-School Partnerships -- 13.4 The "STEM Vision Framework". 
505 8 |a 13.5 Case Studies -- 13.5.1 Case 1: School J -- 13.5.2 Case 2: School G -- 13.5.3 Case 3: School H -- 13.5.4 Discussion -- 13.6 Conclusion -- References -- 14 "Draw What You See" Transcending the Mathematics Classroom -- 14.1 Introduction -- 14.2 Literature -- 14.3 Context and Task -- 14.4 Narrative of Experience -- 14.4.1 Redefining Authority -- 14.4.2 Redefining Autonomy -- 14.4.3 Redefining Success -- 14.4.4 Redefining Relationships with Others -- 14.5 Discussion and Conclusion -- References -- 15 Inter-disciplinary Mathematics: Old Wine in New Bottles? -- 15.1 Early Inter-disciplinarians and Interdisciplinarity -- 15.2 Modern Times -- 15.2.1 Integrative Approaches to Inter-disciplinary Learning -- 15.2.2 Integration of STEM -- 15.3 Caveats -- 15.4 Discussion -- References -- Teacher Education and Teacher Development -- 16 Teacher Education and Teacher Development -- References -- 17 Inclusion of Interdisciplinary Approach in the Mathematics Education of Biology Trainee Teachers in Slovakia -- 17.1 Introduction -- 17.2 Methods and Instruments -- 17.2.1 Development of Teaching Material -- 17.2.2 Mathematical Competencies Assessment -- 17.2.3 Feedback Obtained in Questionnaire Survey -- 17.3 Results and Discussion -- 17.3.1 Worksheet About Human Blood -- 17.3.2 Mathematical Competence Assessment -- 17.3.3 Feedback Obtained in Questionnaire Survey -- 17.4 Conclusion -- References -- 18 Creating Academic Teacher Scholars in STEM Education by Preparing Preservice Teachers as Researchers -- 18.1 Introduction -- 18.2 Background and Literature -- 18.3 Participants -- 18.4 Programme Description -- 18.4.1 Individualized Research Projects -- 18.4.2 Methods -- 18.5 Results and Discussion -- 18.5.1 Fellows' Beliefs Concerning Stem Education Research -- 18.5.2 Student Skills of Education Research -- 18.5.3 Impact on Fellows' Future Teaching. 
505 8 |a 18.6 Conclusion and Coda -- References -- Conclusion to Interdisciplinary Mathematics Education -- 19 Conclusion to Interdisciplinary Mathematics Education -- References. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Williams, Julian. 
700 1 |a Swanson, David. 
700 1 |a Borromeo Ferri, Rita. 
700 1 |a Drake, Pat. 
776 0 8 |i Print version:  |a Doig, Brian  |t Interdisciplinary Mathematics Education  |d Cham : Springer International Publishing AG,c2019  |z 9783030110659 
797 2 |a ProQuest (Firm) 
830 0 |a ICME-13 Monographs 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5719213  |z Click to View