Clean Technologies Toward a Sustainable Future : : Physicochemical, Biochemical and Biotechnological Approaches.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:London : : IWA Publishing,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (342 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Cover
  • Contents
  • The Editors
  • Preface
  • Acknowledgments
  • Chapter 1 : Microbes and wastewater treatment
  • 1.1   Introduction
  • 1.2   Need for wastewater treatment
  • 1.3   Role of microbes in wastewater treatment
  • 1.4   Common microbes used in wastewater treatment
  • 1.4.1   Bacteria
  • 1.4.2   Protozoa
  • 1.4.3   Metazoa
  • 1.4.4   Filamentous bacteria
  • 1.4.5   Algae
  • 1.4.6   Fungi
  • 1.5   Microbial wastewater techniques
  • 1.5.1   Preliminary treatment
  • 1.5.2   Primary treatment
  • 1.5.3   Secondary treatment
  • 1.5.4   Activated sludge process
  • 1.5.5   Waste stabilization ponds
  • 1.5.5.1   Anaerobic ponds
  • 1.5.5.2   Facultative ponds
  • 1.5.5.3   Maturation ponds
  • 1.5.5.4   High-rate algal ponds
  • 1.5.5.5   Tertiary treatment and disinfection
  • 1.6   Microbial fuel cells
  • 1.6.1   MFC configuration
  • 1.6.2   Mechanism of MFC
  • 1.6.3   Wastewater from MFC
  • 1.7   MFCs with synthetic wastewater as substrates
  • 1.8   MFCs with actual wastewater as substrates
  • 1.9   Bioremediation
  • 1.9.1   Principle
  • 1.9.2   Methods of bioremediation of wastewater
  • 1.9.2.1   Bacteria
  • 1.9.2.2   Applications of oxygenic photosynthetic bacteria (cyanobacteria in bioremediation)
  • 1.9.2.3   Algae
  • 1.9.2.4   Fungi
  • 1.9.2.5   Yeast
  • 1.10   Activated sludge process
  • 1.11   Conclusion
  • References
  • Chapter 2 : Elucidation of omics approaches and computational techniques for wastewater treatment: A deep insight
  • 2.1   Introduction
  • 2.2   Bioremediation
  • 2.3   Bioremediation and omics
  • 2.4   Bioremediation and genomics
  • 2.4.1   In-silico toxicity of the compounds
  • 2.5   System biology approach in bioremediation
  • 2.6   Metagenomics in bioremediation
  • 2.7   Microarray analysis in bioremediation.
  • 2.8   Single cell sequencing approach in bioremediation
  • 2.9   Next-generation sequencing in bioremediation
  • 2.10   Metaproteomic in bioremediation
  • 2.11   Meta-transcriptomics in bioremediation
  • 2.12   Metabolomics in bioremediation
  • 2.13   Molecular docking approaches in bioremediation
  • 2.14   Conclusion and future perspective
  • References
  • Chapter 3 : Bioremediation: role of zooplankton in urban waters
  • 3.1   Introduction
  • 3.2   Urban waters and zooplankton as a part of its dynamic population
  • 3.3   Role of zooplankton in providing significant and valuable role in urban waters
  • 3.4   Zooplankton as bioindicator species
  • 3.5   Zooplankton-assisted bioremediation in wastewaters
  • 3.6   Parameters controlling bioremediation in wastewaters by zooplankton
  • 3.7   Cumulative role of zooplankton with other organisms of urban waters
  • 3.8   Conclusion
  • References
  • Chapter 4 : Carbon sequestration: principle and recent advances
  • 4.1   Atmospheric Carbon and its Sequestration
  • 4.2   Conventional CO 2 capture approaches
  • 4.3   Chemical and emerging capture methods
  • 4.4   Biological carbon capture and sequestration
  • 4.4.1   Carbon capture mechanisms
  • 4.4.2   Biological CO 2 sequestration from point sources
  • 4.5   Algal biofuels
  • 4.5.1   Biodiesel
  • 4.5.1.1   Cell cultivation and harvesting
  • 4.5.1.2   Lipid extraction and conversion
  • 4.5.2   Biocrude and triterpenes
  • 4.6   Biogas
  • 4.6.1   Anaerobic digestion
  • 4.6.2   Biomethane enhancement
  • 4.7   Biohydrogen
  • 4.7.1   Dark fermentation
  • 4.7.2   Photofermentation
  • 4.7.3   Biophotolysis
  • 4.8   Conclusion
  • References
  • Chapter 5: Exploiting hydrocarbon-degrading bacteria for reclamation of petroleum hydrocarbon polluted sites
  • 5.1 Introduction.
  • 5.2 Chemical nature of petroleum hydrocarbons
  • 5.3 Sources of petroleum hydrocarbon pollution
  • 5.4 Toxicity of petroleum hydrocarbons
  • 5.5 Fate of petroleum hydrocarbon in nature
  • 5.6 Hydrocarbon degrading bacteria
  • 5.7 Degradation pathway of petroleum hydrocarbon
  • 5.8 Genetics of petroleum hydrocarbon biodegradation
  • 5.9 Reclamation of petroleum hydrocarbon-contaminated sites
  • 5.10 Factors influencing reclamation of petroleum hydrocarbon-contaminated site
  • 5.10.1 Bioavailability
  • 5.10.2 pH
  • 5.10.3 Temperature
  • 5.10.4 Oxygen
  • 5.10.5 Nutrient and moisture
  • 5.10.6 Salinity
  • 5.10.7 Soil type
  • 5.10.8 Heavy metal contamination
  • 5.11 Conclusions and future direction
  • References
  • Chapter 6 : Recent advancement in microbial remediation of heavy metals from industrial effluents
  • 6.1   Introduction
  • 6.2   Toxicity of heavy metals
  • 6.2.1   Arsenic
  • 6.2.2   Lead
  • 6.2.3   Mercury
  • 6.2.4   Cadmium
  • 6.2.5   Chromium
  • 6.2.6   Aluminum
  • 6.3   Impact of heavy metals on soil
  • 6.4   Impact of heavy metals on plants
  • 6.5   Impact of heavy metals on aquatic systems
  • 6.6   Bioremediation
  • 6.6.1   Bio stimulation
  • 6.6.2   Bio attenuation (natural attenuation)
  • 6.6.3   Bio augmentation
  • 6.6.4   Genetically engineered microorganisms in bioremediation
  • 6.6.5   Bioventing
  • 6.6.6   Biopile
  • 6.7   The Several Species of Organisms Utilized in Bioremediation
  • 6.7.1   Temperature
  • 6.7.2   pH
  • 6.7.3   Nutrients
  • 6.7.4   Moisture
  • 6.7.5   Electron acceptors
  • 6.7.6   Factors related to the reactor design
  • 6.7.7   Organism-related factors
  • 6.7.8   Pollutant-related factors
  • 6.7.9   Mechanism of bioremediation
  • 6.8   Conclusion
  • References.
  • Chapter 7 : Clean production approaches in industries: a case study on pulp and paper production facility applications
  • 7.1   Introduction
  • 7.1.1   Clean (sustainable) production concept and approach
  • 7.1.2   Development of CP concept
  • 7.1.3   CP to sustainable production
  • 7.1.4   CP and eco-efficiency
  • 7.1.5   CP and industrial ecology (symbiosis)
  • 7.2   CP benefits/gains
  • 7.2.1   Economic gains
  • 7.2.2   Compliance with regulations
  • 7.2.3   Compliance with legal sanctions
  • 7.2.4   Motivation of employees
  • 7.2.5   Environmental benefits
  • 7.2.6   Increasing institution and product image
  • 7.2.7   Reducing possible risks against occupational health and safety
  • 7.3   Obstacles in CP Practices
  • 7.3.1   Economic challenges
  • 7.3.2   Barriers to implementation and management
  • 7.4   Components, Tools, and Methods of Clean (Sustainable) Production
  • 7.4.1   Clean (sustainable) production components
  • 7.4.1.1   Reduction of waste at source
  • 7.4.1.2   Reuse/recycle
  • 7.4.1.3   Product modification
  • 7.4.2   Clean (sustainable) production tools and methods
  • 7.4.2.1   Environmental impact assessment
  • 7.4.2.2   Life-cycle assessment
  • 7.4.2.3   Environmental technology evaluation
  • 7.4.2.4   Chemical evaluation
  • 7.4.2.5   Waste audit
  • 7.4.2.6   Environmental audit
  • 7.5   CP Practices Applied in Different Industries
  • 7.5.1   Textile production facility: CP practices
  • 7.5.1.1   In Korea ( Asia Pacific Economic cooperation (APEC), 2006 )
  • 7.5.1.2   In Peru ( Asia Pacific Economic cooperation (APEC), 2006 )
  • 7.5.1.3   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011
  • Alkaya et al. , 2011 )
  • 7.5.2   Rubber production facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ).
  • 7.5.3   Fertilizer manufacturer facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 )
  • 7.5.4   Leather processing facility CP practices in Croatia ( Greco Initiative &amp
  • Regional Activity Centre for Cleaner Production (CP/RAC), 2008 )
  • 7.5.5   Canned food production facility CP practices for water and energy saving in Egypt ( Greco Initiative &amp
  • Regional Activity Centre for Cleaner Production (CP/RAC), 2008 )
  • 7.5.6   Oil and soap facility CP practices in Egypt ( Greco Initiative &amp
  • Regional Activity Centre for Cleaner Production (CP/RAC), 2008 )
  • 7.5.7   Beverage facility CP practices
  • 7.5.7.1   In New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 )
  • 7.5.7.2   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011
  • Alkaya et al. , 2011 )
  • 7.5.8   Dairy production facility CP technology practices ( Kotan &amp
  • Bakan, 2007 )
  • 7.5.9   Sugar production facility clean (sustainable) production practices ( Greco Initiative &amp
  • Regional Activity Centre for Cleaner Production (CP/RAC), 2008 )
  • 7.5.9.1   Facility-1 in Fes, Morocco
  • 7.5.9.2   Facility-2 in Slovenia
  • 7.5.10   Metal coating and painting facility in CP practices
  • 7.5.10.1   Facility-1 ( MPM Publications, 2007 )
  • 7.5.10.2   Facility-2 ( Demirer, 2009 )
  • 7.6   Case Study on CP Practices at Pulp and Paper Production Facility in Turkey
  • 7.6.1   Processes in the facility
  • 7.6.2   CP practices in the facility
  • 7.6.2.1   Selection of production techniques that pollute the environment less
  • 7.6.2.2   Correct selection of the treatment system and reuse of waste water in paper processing
  • 7.6.2.3   Reducing the amount of chemical substance used
  • 7.6.2.4   Evaluation of waste heat and energy saving
  • 7.6.2.5   Wastes
  • 7.6.2.6   Emissions.
  • 7.7   Discussion and Conclusion.