Clean Technologies Toward a Sustainable Future : : Physicochemical, Biochemical and Biotechnological Approaches.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:London : : IWA Publishing,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (342 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 50030662226
ctrlnum (MiAaPQ)50030662226
(Au-PeEL)EBL30662226
collection bib_alma
record_format marc
spelling Verma, Pradeep.
Clean Technologies Toward a Sustainable Future : Physicochemical, Biochemical and Biotechnological Approaches.
1st ed.
London : IWA Publishing, 2023.
©2023.
1 online resource (342 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Cover -- Contents -- The Editors -- Preface -- Acknowledgments -- Chapter 1 : Microbes and wastewater treatment -- 1.1   Introduction -- 1.2   Need for wastewater treatment -- 1.3   Role of microbes in wastewater treatment -- 1.4   Common microbes used in wastewater treatment -- 1.4.1   Bacteria -- 1.4.2   Protozoa -- 1.4.3   Metazoa -- 1.4.4   Filamentous bacteria -- 1.4.5   Algae -- 1.4.6   Fungi -- 1.5   Microbial wastewater techniques -- 1.5.1   Preliminary treatment -- 1.5.2   Primary treatment -- 1.5.3   Secondary treatment -- 1.5.4   Activated sludge process -- 1.5.5   Waste stabilization ponds -- 1.5.5.1   Anaerobic ponds -- 1.5.5.2   Facultative ponds -- 1.5.5.3   Maturation ponds -- 1.5.5.4   High-rate algal ponds -- 1.5.5.5   Tertiary treatment and disinfection -- 1.6   Microbial fuel cells -- 1.6.1   MFC configuration -- 1.6.2   Mechanism of MFC -- 1.6.3   Wastewater from MFC -- 1.7   MFCs with synthetic wastewater as substrates -- 1.8   MFCs with actual wastewater as substrates -- 1.9   Bioremediation -- 1.9.1   Principle -- 1.9.2   Methods of bioremediation of wastewater -- 1.9.2.1   Bacteria -- 1.9.2.2   Applications of oxygenic photosynthetic bacteria (cyanobacteria in bioremediation) -- 1.9.2.3   Algae -- 1.9.2.4   Fungi -- 1.9.2.5   Yeast -- 1.10   Activated sludge process -- 1.11   Conclusion -- References -- Chapter 2 : Elucidation of omics approaches and computational techniques for wastewater treatment: A deep insight -- 2.1   Introduction -- 2.2   Bioremediation -- 2.3   Bioremediation and omics -- 2.4   Bioremediation and genomics -- 2.4.1   In-silico toxicity of the compounds -- 2.5   System biology approach in bioremediation -- 2.6   Metagenomics in bioremediation -- 2.7   Microarray analysis in bioremediation.
2.8   Single cell sequencing approach in bioremediation -- 2.9   Next-generation sequencing in bioremediation -- 2.10   Metaproteomic in bioremediation -- 2.11   Meta-transcriptomics in bioremediation -- 2.12   Metabolomics in bioremediation -- 2.13   Molecular docking approaches in bioremediation -- 2.14   Conclusion and future perspective -- References -- Chapter 3 : Bioremediation: role of zooplankton in urban waters -- 3.1   Introduction -- 3.2   Urban waters and zooplankton as a part of its dynamic population -- 3.3   Role of zooplankton in providing significant and valuable role in urban waters -- 3.4   Zooplankton as bioindicator species -- 3.5   Zooplankton-assisted bioremediation in wastewaters -- 3.6   Parameters controlling bioremediation in wastewaters by zooplankton -- 3.7   Cumulative role of zooplankton with other organisms of urban waters -- 3.8   Conclusion -- References -- Chapter 4 : Carbon sequestration: principle and recent advances -- 4.1   Atmospheric Carbon and its Sequestration -- 4.2   Conventional CO 2 capture approaches -- 4.3   Chemical and emerging capture methods -- 4.4   Biological carbon capture and sequestration -- 4.4.1   Carbon capture mechanisms -- 4.4.2   Biological CO 2 sequestration from point sources -- 4.5   Algal biofuels -- 4.5.1   Biodiesel -- 4.5.1.1   Cell cultivation and harvesting -- 4.5.1.2   Lipid extraction and conversion -- 4.5.2   Biocrude and triterpenes -- 4.6   Biogas -- 4.6.1   Anaerobic digestion -- 4.6.2   Biomethane enhancement -- 4.7   Biohydrogen -- 4.7.1   Dark fermentation -- 4.7.2   Photofermentation -- 4.7.3   Biophotolysis -- 4.8   Conclusion -- References -- Chapter 5: Exploiting hydrocarbon-degrading bacteria for reclamation of petroleum hydrocarbon polluted sites -- 5.1 Introduction.
5.2 Chemical nature of petroleum hydrocarbons -- 5.3 Sources of petroleum hydrocarbon pollution -- 5.4 Toxicity of petroleum hydrocarbons -- 5.5 Fate of petroleum hydrocarbon in nature -- 5.6 Hydrocarbon degrading bacteria -- 5.7 Degradation pathway of petroleum hydrocarbon -- 5.8 Genetics of petroleum hydrocarbon biodegradation -- 5.9 Reclamation of petroleum hydrocarbon-contaminated sites -- 5.10 Factors influencing reclamation of petroleum hydrocarbon-contaminated site -- 5.10.1 Bioavailability -- 5.10.2 pH -- 5.10.3 Temperature -- 5.10.4 Oxygen -- 5.10.5 Nutrient and moisture -- 5.10.6 Salinity -- 5.10.7 Soil type -- 5.10.8 Heavy metal contamination -- 5.11 Conclusions and future direction -- References -- Chapter 6 : Recent advancement in microbial remediation of heavy metals from industrial effluents -- 6.1   Introduction -- 6.2   Toxicity of heavy metals -- 6.2.1   Arsenic -- 6.2.2   Lead -- 6.2.3   Mercury -- 6.2.4   Cadmium -- 6.2.5   Chromium -- 6.2.6   Aluminum -- 6.3   Impact of heavy metals on soil -- 6.4   Impact of heavy metals on plants -- 6.5   Impact of heavy metals on aquatic systems -- 6.6   Bioremediation -- 6.6.1   Bio stimulation -- 6.6.2   Bio attenuation (natural attenuation) -- 6.6.3   Bio augmentation -- 6.6.4   Genetically engineered microorganisms in bioremediation -- 6.6.5   Bioventing -- 6.6.6   Biopile -- 6.7   The Several Species of Organisms Utilized in Bioremediation -- 6.7.1   Temperature -- 6.7.2   pH -- 6.7.3   Nutrients -- 6.7.4   Moisture -- 6.7.5   Electron acceptors -- 6.7.6   Factors related to the reactor design -- 6.7.7   Organism-related factors -- 6.7.8   Pollutant-related factors -- 6.7.9   Mechanism of bioremediation -- 6.8   Conclusion -- References.
Chapter 7 : Clean production approaches in industries: a case study on pulp and paper production facility applications -- 7.1   Introduction -- 7.1.1   Clean (sustainable) production concept and approach -- 7.1.2   Development of CP concept -- 7.1.3   CP to sustainable production -- 7.1.4   CP and eco-efficiency -- 7.1.5   CP and industrial ecology (symbiosis) -- 7.2   CP benefits/gains -- 7.2.1   Economic gains -- 7.2.2   Compliance with regulations -- 7.2.3   Compliance with legal sanctions -- 7.2.4   Motivation of employees -- 7.2.5   Environmental benefits -- 7.2.6   Increasing institution and product image -- 7.2.7   Reducing possible risks against occupational health and safety -- 7.3   Obstacles in CP Practices -- 7.3.1   Economic challenges -- 7.3.2   Barriers to implementation and management -- 7.4   Components, Tools, and Methods of Clean (Sustainable) Production -- 7.4.1   Clean (sustainable) production components -- 7.4.1.1   Reduction of waste at source -- 7.4.1.2   Reuse/recycle -- 7.4.1.3   Product modification -- 7.4.2   Clean (sustainable) production tools and methods -- 7.4.2.1   Environmental impact assessment -- 7.4.2.2   Life-cycle assessment -- 7.4.2.3   Environmental technology evaluation -- 7.4.2.4   Chemical evaluation -- 7.4.2.5   Waste audit -- 7.4.2.6   Environmental audit -- 7.5   CP Practices Applied in Different Industries -- 7.5.1   Textile production facility: CP practices -- 7.5.1.1   In Korea ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.2   In Peru ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.3   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.2   Rubber production facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ).
7.5.3   Fertilizer manufacturer facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.4   Leather processing facility CP practices in Croatia ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.5   Canned food production facility CP practices for water and energy saving in Egypt ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.6   Oil and soap facility CP practices in Egypt ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.7   Beverage facility CP practices -- 7.5.7.1   In New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.7.2   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.8   Dairy production facility CP technology practices ( Kotan &amp -- Bakan, 2007 ) -- 7.5.9   Sugar production facility clean (sustainable) production practices ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.9.1   Facility-1 in Fes, Morocco -- 7.5.9.2   Facility-2 in Slovenia -- 7.5.10   Metal coating and painting facility in CP practices -- 7.5.10.1   Facility-1 ( MPM Publications, 2007 ) -- 7.5.10.2   Facility-2 ( Demirer, 2009 ) -- 7.6   Case Study on CP Practices at Pulp and Paper Production Facility in Turkey -- 7.6.1   Processes in the facility -- 7.6.2   CP practices in the facility -- 7.6.2.1   Selection of production techniques that pollute the environment less -- 7.6.2.2   Correct selection of the treatment system and reuse of waste water in paper processing -- 7.6.2.3   Reducing the amount of chemical substance used -- 7.6.2.4   Evaluation of waste heat and energy saving -- 7.6.2.5   Wastes -- 7.6.2.6   Emissions.
7.7   Discussion and Conclusion.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Shah, Maulin.
Print version: Verma, Pradeep Clean Technologies Toward a Sustainable Future London : IWA Publishing,c2023 9781789063776
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30662226 Click to View
language English
format eBook
author Verma, Pradeep.
spellingShingle Verma, Pradeep.
Clean Technologies Toward a Sustainable Future : Physicochemical, Biochemical and Biotechnological Approaches.
Intro -- Cover -- Contents -- The Editors -- Preface -- Acknowledgments -- Chapter 1 : Microbes and wastewater treatment -- 1.1   Introduction -- 1.2   Need for wastewater treatment -- 1.3   Role of microbes in wastewater treatment -- 1.4   Common microbes used in wastewater treatment -- 1.4.1   Bacteria -- 1.4.2   Protozoa -- 1.4.3   Metazoa -- 1.4.4   Filamentous bacteria -- 1.4.5   Algae -- 1.4.6   Fungi -- 1.5   Microbial wastewater techniques -- 1.5.1   Preliminary treatment -- 1.5.2   Primary treatment -- 1.5.3   Secondary treatment -- 1.5.4   Activated sludge process -- 1.5.5   Waste stabilization ponds -- 1.5.5.1   Anaerobic ponds -- 1.5.5.2   Facultative ponds -- 1.5.5.3   Maturation ponds -- 1.5.5.4   High-rate algal ponds -- 1.5.5.5   Tertiary treatment and disinfection -- 1.6   Microbial fuel cells -- 1.6.1   MFC configuration -- 1.6.2   Mechanism of MFC -- 1.6.3   Wastewater from MFC -- 1.7   MFCs with synthetic wastewater as substrates -- 1.8   MFCs with actual wastewater as substrates -- 1.9   Bioremediation -- 1.9.1   Principle -- 1.9.2   Methods of bioremediation of wastewater -- 1.9.2.1   Bacteria -- 1.9.2.2   Applications of oxygenic photosynthetic bacteria (cyanobacteria in bioremediation) -- 1.9.2.3   Algae -- 1.9.2.4   Fungi -- 1.9.2.5   Yeast -- 1.10   Activated sludge process -- 1.11   Conclusion -- References -- Chapter 2 : Elucidation of omics approaches and computational techniques for wastewater treatment: A deep insight -- 2.1   Introduction -- 2.2   Bioremediation -- 2.3   Bioremediation and omics -- 2.4   Bioremediation and genomics -- 2.4.1   In-silico toxicity of the compounds -- 2.5   System biology approach in bioremediation -- 2.6   Metagenomics in bioremediation -- 2.7   Microarray analysis in bioremediation.
2.8   Single cell sequencing approach in bioremediation -- 2.9   Next-generation sequencing in bioremediation -- 2.10   Metaproteomic in bioremediation -- 2.11   Meta-transcriptomics in bioremediation -- 2.12   Metabolomics in bioremediation -- 2.13   Molecular docking approaches in bioremediation -- 2.14   Conclusion and future perspective -- References -- Chapter 3 : Bioremediation: role of zooplankton in urban waters -- 3.1   Introduction -- 3.2   Urban waters and zooplankton as a part of its dynamic population -- 3.3   Role of zooplankton in providing significant and valuable role in urban waters -- 3.4   Zooplankton as bioindicator species -- 3.5   Zooplankton-assisted bioremediation in wastewaters -- 3.6   Parameters controlling bioremediation in wastewaters by zooplankton -- 3.7   Cumulative role of zooplankton with other organisms of urban waters -- 3.8   Conclusion -- References -- Chapter 4 : Carbon sequestration: principle and recent advances -- 4.1   Atmospheric Carbon and its Sequestration -- 4.2   Conventional CO 2 capture approaches -- 4.3   Chemical and emerging capture methods -- 4.4   Biological carbon capture and sequestration -- 4.4.1   Carbon capture mechanisms -- 4.4.2   Biological CO 2 sequestration from point sources -- 4.5   Algal biofuels -- 4.5.1   Biodiesel -- 4.5.1.1   Cell cultivation and harvesting -- 4.5.1.2   Lipid extraction and conversion -- 4.5.2   Biocrude and triterpenes -- 4.6   Biogas -- 4.6.1   Anaerobic digestion -- 4.6.2   Biomethane enhancement -- 4.7   Biohydrogen -- 4.7.1   Dark fermentation -- 4.7.2   Photofermentation -- 4.7.3   Biophotolysis -- 4.8   Conclusion -- References -- Chapter 5: Exploiting hydrocarbon-degrading bacteria for reclamation of petroleum hydrocarbon polluted sites -- 5.1 Introduction.
5.2 Chemical nature of petroleum hydrocarbons -- 5.3 Sources of petroleum hydrocarbon pollution -- 5.4 Toxicity of petroleum hydrocarbons -- 5.5 Fate of petroleum hydrocarbon in nature -- 5.6 Hydrocarbon degrading bacteria -- 5.7 Degradation pathway of petroleum hydrocarbon -- 5.8 Genetics of petroleum hydrocarbon biodegradation -- 5.9 Reclamation of petroleum hydrocarbon-contaminated sites -- 5.10 Factors influencing reclamation of petroleum hydrocarbon-contaminated site -- 5.10.1 Bioavailability -- 5.10.2 pH -- 5.10.3 Temperature -- 5.10.4 Oxygen -- 5.10.5 Nutrient and moisture -- 5.10.6 Salinity -- 5.10.7 Soil type -- 5.10.8 Heavy metal contamination -- 5.11 Conclusions and future direction -- References -- Chapter 6 : Recent advancement in microbial remediation of heavy metals from industrial effluents -- 6.1   Introduction -- 6.2   Toxicity of heavy metals -- 6.2.1   Arsenic -- 6.2.2   Lead -- 6.2.3   Mercury -- 6.2.4   Cadmium -- 6.2.5   Chromium -- 6.2.6   Aluminum -- 6.3   Impact of heavy metals on soil -- 6.4   Impact of heavy metals on plants -- 6.5   Impact of heavy metals on aquatic systems -- 6.6   Bioremediation -- 6.6.1   Bio stimulation -- 6.6.2   Bio attenuation (natural attenuation) -- 6.6.3   Bio augmentation -- 6.6.4   Genetically engineered microorganisms in bioremediation -- 6.6.5   Bioventing -- 6.6.6   Biopile -- 6.7   The Several Species of Organisms Utilized in Bioremediation -- 6.7.1   Temperature -- 6.7.2   pH -- 6.7.3   Nutrients -- 6.7.4   Moisture -- 6.7.5   Electron acceptors -- 6.7.6   Factors related to the reactor design -- 6.7.7   Organism-related factors -- 6.7.8   Pollutant-related factors -- 6.7.9   Mechanism of bioremediation -- 6.8   Conclusion -- References.
Chapter 7 : Clean production approaches in industries: a case study on pulp and paper production facility applications -- 7.1   Introduction -- 7.1.1   Clean (sustainable) production concept and approach -- 7.1.2   Development of CP concept -- 7.1.3   CP to sustainable production -- 7.1.4   CP and eco-efficiency -- 7.1.5   CP and industrial ecology (symbiosis) -- 7.2   CP benefits/gains -- 7.2.1   Economic gains -- 7.2.2   Compliance with regulations -- 7.2.3   Compliance with legal sanctions -- 7.2.4   Motivation of employees -- 7.2.5   Environmental benefits -- 7.2.6   Increasing institution and product image -- 7.2.7   Reducing possible risks against occupational health and safety -- 7.3   Obstacles in CP Practices -- 7.3.1   Economic challenges -- 7.3.2   Barriers to implementation and management -- 7.4   Components, Tools, and Methods of Clean (Sustainable) Production -- 7.4.1   Clean (sustainable) production components -- 7.4.1.1   Reduction of waste at source -- 7.4.1.2   Reuse/recycle -- 7.4.1.3   Product modification -- 7.4.2   Clean (sustainable) production tools and methods -- 7.4.2.1   Environmental impact assessment -- 7.4.2.2   Life-cycle assessment -- 7.4.2.3   Environmental technology evaluation -- 7.4.2.4   Chemical evaluation -- 7.4.2.5   Waste audit -- 7.4.2.6   Environmental audit -- 7.5   CP Practices Applied in Different Industries -- 7.5.1   Textile production facility: CP practices -- 7.5.1.1   In Korea ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.2   In Peru ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.3   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.2   Rubber production facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ).
7.5.3   Fertilizer manufacturer facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.4   Leather processing facility CP practices in Croatia ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.5   Canned food production facility CP practices for water and energy saving in Egypt ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.6   Oil and soap facility CP practices in Egypt ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.7   Beverage facility CP practices -- 7.5.7.1   In New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.7.2   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.8   Dairy production facility CP technology practices ( Kotan &amp -- Bakan, 2007 ) -- 7.5.9   Sugar production facility clean (sustainable) production practices ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.9.1   Facility-1 in Fes, Morocco -- 7.5.9.2   Facility-2 in Slovenia -- 7.5.10   Metal coating and painting facility in CP practices -- 7.5.10.1   Facility-1 ( MPM Publications, 2007 ) -- 7.5.10.2   Facility-2 ( Demirer, 2009 ) -- 7.6   Case Study on CP Practices at Pulp and Paper Production Facility in Turkey -- 7.6.1   Processes in the facility -- 7.6.2   CP practices in the facility -- 7.6.2.1   Selection of production techniques that pollute the environment less -- 7.6.2.2   Correct selection of the treatment system and reuse of waste water in paper processing -- 7.6.2.3   Reducing the amount of chemical substance used -- 7.6.2.4   Evaluation of waste heat and energy saving -- 7.6.2.5   Wastes -- 7.6.2.6   Emissions.
7.7   Discussion and Conclusion.
author_facet Verma, Pradeep.
Shah, Maulin.
author_variant p v pv
author2 Shah, Maulin.
author2_variant m s ms
author2_role TeilnehmendeR
author_sort Verma, Pradeep.
title Clean Technologies Toward a Sustainable Future : Physicochemical, Biochemical and Biotechnological Approaches.
title_sub Physicochemical, Biochemical and Biotechnological Approaches.
title_full Clean Technologies Toward a Sustainable Future : Physicochemical, Biochemical and Biotechnological Approaches.
title_fullStr Clean Technologies Toward a Sustainable Future : Physicochemical, Biochemical and Biotechnological Approaches.
title_full_unstemmed Clean Technologies Toward a Sustainable Future : Physicochemical, Biochemical and Biotechnological Approaches.
title_auth Clean Technologies Toward a Sustainable Future : Physicochemical, Biochemical and Biotechnological Approaches.
title_new Clean Technologies Toward a Sustainable Future :
title_sort clean technologies toward a sustainable future : physicochemical, biochemical and biotechnological approaches.
publisher IWA Publishing,
publishDate 2023
physical 1 online resource (342 pages)
edition 1st ed.
contents Intro -- Cover -- Contents -- The Editors -- Preface -- Acknowledgments -- Chapter 1 : Microbes and wastewater treatment -- 1.1   Introduction -- 1.2   Need for wastewater treatment -- 1.3   Role of microbes in wastewater treatment -- 1.4   Common microbes used in wastewater treatment -- 1.4.1   Bacteria -- 1.4.2   Protozoa -- 1.4.3   Metazoa -- 1.4.4   Filamentous bacteria -- 1.4.5   Algae -- 1.4.6   Fungi -- 1.5   Microbial wastewater techniques -- 1.5.1   Preliminary treatment -- 1.5.2   Primary treatment -- 1.5.3   Secondary treatment -- 1.5.4   Activated sludge process -- 1.5.5   Waste stabilization ponds -- 1.5.5.1   Anaerobic ponds -- 1.5.5.2   Facultative ponds -- 1.5.5.3   Maturation ponds -- 1.5.5.4   High-rate algal ponds -- 1.5.5.5   Tertiary treatment and disinfection -- 1.6   Microbial fuel cells -- 1.6.1   MFC configuration -- 1.6.2   Mechanism of MFC -- 1.6.3   Wastewater from MFC -- 1.7   MFCs with synthetic wastewater as substrates -- 1.8   MFCs with actual wastewater as substrates -- 1.9   Bioremediation -- 1.9.1   Principle -- 1.9.2   Methods of bioremediation of wastewater -- 1.9.2.1   Bacteria -- 1.9.2.2   Applications of oxygenic photosynthetic bacteria (cyanobacteria in bioremediation) -- 1.9.2.3   Algae -- 1.9.2.4   Fungi -- 1.9.2.5   Yeast -- 1.10   Activated sludge process -- 1.11   Conclusion -- References -- Chapter 2 : Elucidation of omics approaches and computational techniques for wastewater treatment: A deep insight -- 2.1   Introduction -- 2.2   Bioremediation -- 2.3   Bioremediation and omics -- 2.4   Bioremediation and genomics -- 2.4.1   In-silico toxicity of the compounds -- 2.5   System biology approach in bioremediation -- 2.6   Metagenomics in bioremediation -- 2.7   Microarray analysis in bioremediation.
2.8   Single cell sequencing approach in bioremediation -- 2.9   Next-generation sequencing in bioremediation -- 2.10   Metaproteomic in bioremediation -- 2.11   Meta-transcriptomics in bioremediation -- 2.12   Metabolomics in bioremediation -- 2.13   Molecular docking approaches in bioremediation -- 2.14   Conclusion and future perspective -- References -- Chapter 3 : Bioremediation: role of zooplankton in urban waters -- 3.1   Introduction -- 3.2   Urban waters and zooplankton as a part of its dynamic population -- 3.3   Role of zooplankton in providing significant and valuable role in urban waters -- 3.4   Zooplankton as bioindicator species -- 3.5   Zooplankton-assisted bioremediation in wastewaters -- 3.6   Parameters controlling bioremediation in wastewaters by zooplankton -- 3.7   Cumulative role of zooplankton with other organisms of urban waters -- 3.8   Conclusion -- References -- Chapter 4 : Carbon sequestration: principle and recent advances -- 4.1   Atmospheric Carbon and its Sequestration -- 4.2   Conventional CO 2 capture approaches -- 4.3   Chemical and emerging capture methods -- 4.4   Biological carbon capture and sequestration -- 4.4.1   Carbon capture mechanisms -- 4.4.2   Biological CO 2 sequestration from point sources -- 4.5   Algal biofuels -- 4.5.1   Biodiesel -- 4.5.1.1   Cell cultivation and harvesting -- 4.5.1.2   Lipid extraction and conversion -- 4.5.2   Biocrude and triterpenes -- 4.6   Biogas -- 4.6.1   Anaerobic digestion -- 4.6.2   Biomethane enhancement -- 4.7   Biohydrogen -- 4.7.1   Dark fermentation -- 4.7.2   Photofermentation -- 4.7.3   Biophotolysis -- 4.8   Conclusion -- References -- Chapter 5: Exploiting hydrocarbon-degrading bacteria for reclamation of petroleum hydrocarbon polluted sites -- 5.1 Introduction.
5.2 Chemical nature of petroleum hydrocarbons -- 5.3 Sources of petroleum hydrocarbon pollution -- 5.4 Toxicity of petroleum hydrocarbons -- 5.5 Fate of petroleum hydrocarbon in nature -- 5.6 Hydrocarbon degrading bacteria -- 5.7 Degradation pathway of petroleum hydrocarbon -- 5.8 Genetics of petroleum hydrocarbon biodegradation -- 5.9 Reclamation of petroleum hydrocarbon-contaminated sites -- 5.10 Factors influencing reclamation of petroleum hydrocarbon-contaminated site -- 5.10.1 Bioavailability -- 5.10.2 pH -- 5.10.3 Temperature -- 5.10.4 Oxygen -- 5.10.5 Nutrient and moisture -- 5.10.6 Salinity -- 5.10.7 Soil type -- 5.10.8 Heavy metal contamination -- 5.11 Conclusions and future direction -- References -- Chapter 6 : Recent advancement in microbial remediation of heavy metals from industrial effluents -- 6.1   Introduction -- 6.2   Toxicity of heavy metals -- 6.2.1   Arsenic -- 6.2.2   Lead -- 6.2.3   Mercury -- 6.2.4   Cadmium -- 6.2.5   Chromium -- 6.2.6   Aluminum -- 6.3   Impact of heavy metals on soil -- 6.4   Impact of heavy metals on plants -- 6.5   Impact of heavy metals on aquatic systems -- 6.6   Bioremediation -- 6.6.1   Bio stimulation -- 6.6.2   Bio attenuation (natural attenuation) -- 6.6.3   Bio augmentation -- 6.6.4   Genetically engineered microorganisms in bioremediation -- 6.6.5   Bioventing -- 6.6.6   Biopile -- 6.7   The Several Species of Organisms Utilized in Bioremediation -- 6.7.1   Temperature -- 6.7.2   pH -- 6.7.3   Nutrients -- 6.7.4   Moisture -- 6.7.5   Electron acceptors -- 6.7.6   Factors related to the reactor design -- 6.7.7   Organism-related factors -- 6.7.8   Pollutant-related factors -- 6.7.9   Mechanism of bioremediation -- 6.8   Conclusion -- References.
Chapter 7 : Clean production approaches in industries: a case study on pulp and paper production facility applications -- 7.1   Introduction -- 7.1.1   Clean (sustainable) production concept and approach -- 7.1.2   Development of CP concept -- 7.1.3   CP to sustainable production -- 7.1.4   CP and eco-efficiency -- 7.1.5   CP and industrial ecology (symbiosis) -- 7.2   CP benefits/gains -- 7.2.1   Economic gains -- 7.2.2   Compliance with regulations -- 7.2.3   Compliance with legal sanctions -- 7.2.4   Motivation of employees -- 7.2.5   Environmental benefits -- 7.2.6   Increasing institution and product image -- 7.2.7   Reducing possible risks against occupational health and safety -- 7.3   Obstacles in CP Practices -- 7.3.1   Economic challenges -- 7.3.2   Barriers to implementation and management -- 7.4   Components, Tools, and Methods of Clean (Sustainable) Production -- 7.4.1   Clean (sustainable) production components -- 7.4.1.1   Reduction of waste at source -- 7.4.1.2   Reuse/recycle -- 7.4.1.3   Product modification -- 7.4.2   Clean (sustainable) production tools and methods -- 7.4.2.1   Environmental impact assessment -- 7.4.2.2   Life-cycle assessment -- 7.4.2.3   Environmental technology evaluation -- 7.4.2.4   Chemical evaluation -- 7.4.2.5   Waste audit -- 7.4.2.6   Environmental audit -- 7.5   CP Practices Applied in Different Industries -- 7.5.1   Textile production facility: CP practices -- 7.5.1.1   In Korea ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.2   In Peru ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.3   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.2   Rubber production facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ).
7.5.3   Fertilizer manufacturer facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.4   Leather processing facility CP practices in Croatia ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.5   Canned food production facility CP practices for water and energy saving in Egypt ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.6   Oil and soap facility CP practices in Egypt ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.7   Beverage facility CP practices -- 7.5.7.1   In New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.7.2   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.8   Dairy production facility CP technology practices ( Kotan &amp -- Bakan, 2007 ) -- 7.5.9   Sugar production facility clean (sustainable) production practices ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.9.1   Facility-1 in Fes, Morocco -- 7.5.9.2   Facility-2 in Slovenia -- 7.5.10   Metal coating and painting facility in CP practices -- 7.5.10.1   Facility-1 ( MPM Publications, 2007 ) -- 7.5.10.2   Facility-2 ( Demirer, 2009 ) -- 7.6   Case Study on CP Practices at Pulp and Paper Production Facility in Turkey -- 7.6.1   Processes in the facility -- 7.6.2   CP practices in the facility -- 7.6.2.1   Selection of production techniques that pollute the environment less -- 7.6.2.2   Correct selection of the treatment system and reuse of waste water in paper processing -- 7.6.2.3   Reducing the amount of chemical substance used -- 7.6.2.4   Evaluation of waste heat and energy saving -- 7.6.2.5   Wastes -- 7.6.2.6   Emissions.
7.7   Discussion and Conclusion.
isbn 9781789063790
9781789063776
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30662226
illustrated Not Illustrated
work_keys_str_mv AT vermapradeep cleantechnologiestowardasustainablefuturephysicochemicalbiochemicalandbiotechnologicalapproaches
AT shahmaulin cleantechnologiestowardasustainablefuturephysicochemicalbiochemicalandbiotechnologicalapproaches
status_str n
ids_txt_mv (MiAaPQ)50030662226
(Au-PeEL)EBL30662226
carrierType_str_mv cr
is_hierarchy_title Clean Technologies Toward a Sustainable Future : Physicochemical, Biochemical and Biotechnological Approaches.
author2_original_writing_str_mv noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331071322324992
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12141nam a22004213i 4500</leader><controlfield tag="001">50030662226</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073851.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789063790</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781789063776</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)50030662226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30662226</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Verma, Pradeep.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clean Technologies Toward a Sustainable Future :</subfield><subfield code="b">Physicochemical, Biochemical and Biotechnological Approaches.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London :</subfield><subfield code="b">IWA Publishing,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (342 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Cover -- Contents -- The Editors -- Preface -- Acknowledgments -- Chapter 1 : Microbes and wastewater treatment -- 1.1   Introduction -- 1.2   Need for wastewater treatment -- 1.3   Role of microbes in wastewater treatment -- 1.4   Common microbes used in wastewater treatment -- 1.4.1   Bacteria -- 1.4.2   Protozoa -- 1.4.3   Metazoa -- 1.4.4   Filamentous bacteria -- 1.4.5   Algae -- 1.4.6   Fungi -- 1.5   Microbial wastewater techniques -- 1.5.1   Preliminary treatment -- 1.5.2   Primary treatment -- 1.5.3   Secondary treatment -- 1.5.4   Activated sludge process -- 1.5.5   Waste stabilization ponds -- 1.5.5.1   Anaerobic ponds -- 1.5.5.2   Facultative ponds -- 1.5.5.3   Maturation ponds -- 1.5.5.4   High-rate algal ponds -- 1.5.5.5   Tertiary treatment and disinfection -- 1.6   Microbial fuel cells -- 1.6.1   MFC configuration -- 1.6.2   Mechanism of MFC -- 1.6.3   Wastewater from MFC -- 1.7   MFCs with synthetic wastewater as substrates -- 1.8   MFCs with actual wastewater as substrates -- 1.9   Bioremediation -- 1.9.1   Principle -- 1.9.2   Methods of bioremediation of wastewater -- 1.9.2.1   Bacteria -- 1.9.2.2   Applications of oxygenic photosynthetic bacteria (cyanobacteria in bioremediation) -- 1.9.2.3   Algae -- 1.9.2.4   Fungi -- 1.9.2.5   Yeast -- 1.10   Activated sludge process -- 1.11   Conclusion -- References -- Chapter 2 : Elucidation of omics approaches and computational techniques for wastewater treatment: A deep insight -- 2.1   Introduction -- 2.2   Bioremediation -- 2.3   Bioremediation and omics -- 2.4   Bioremediation and genomics -- 2.4.1   In-silico toxicity of the compounds -- 2.5   System biology approach in bioremediation -- 2.6   Metagenomics in bioremediation -- 2.7   Microarray analysis in bioremediation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.8   Single cell sequencing approach in bioremediation -- 2.9   Next-generation sequencing in bioremediation -- 2.10   Metaproteomic in bioremediation -- 2.11   Meta-transcriptomics in bioremediation -- 2.12   Metabolomics in bioremediation -- 2.13   Molecular docking approaches in bioremediation -- 2.14   Conclusion and future perspective -- References -- Chapter 3 : Bioremediation: role of zooplankton in urban waters -- 3.1   Introduction -- 3.2   Urban waters and zooplankton as a part of its dynamic population -- 3.3   Role of zooplankton in providing significant and valuable role in urban waters -- 3.4   Zooplankton as bioindicator species -- 3.5   Zooplankton-assisted bioremediation in wastewaters -- 3.6   Parameters controlling bioremediation in wastewaters by zooplankton -- 3.7   Cumulative role of zooplankton with other organisms of urban waters -- 3.8   Conclusion -- References -- Chapter 4 : Carbon sequestration: principle and recent advances -- 4.1   Atmospheric Carbon and its Sequestration -- 4.2   Conventional CO 2 capture approaches -- 4.3   Chemical and emerging capture methods -- 4.4   Biological carbon capture and sequestration -- 4.4.1   Carbon capture mechanisms -- 4.4.2   Biological CO 2 sequestration from point sources -- 4.5   Algal biofuels -- 4.5.1   Biodiesel -- 4.5.1.1   Cell cultivation and harvesting -- 4.5.1.2   Lipid extraction and conversion -- 4.5.2   Biocrude and triterpenes -- 4.6   Biogas -- 4.6.1   Anaerobic digestion -- 4.6.2   Biomethane enhancement -- 4.7   Biohydrogen -- 4.7.1   Dark fermentation -- 4.7.2   Photofermentation -- 4.7.3   Biophotolysis -- 4.8   Conclusion -- References -- Chapter 5: Exploiting hydrocarbon-degrading bacteria for reclamation of petroleum hydrocarbon polluted sites -- 5.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2 Chemical nature of petroleum hydrocarbons -- 5.3 Sources of petroleum hydrocarbon pollution -- 5.4 Toxicity of petroleum hydrocarbons -- 5.5 Fate of petroleum hydrocarbon in nature -- 5.6 Hydrocarbon degrading bacteria -- 5.7 Degradation pathway of petroleum hydrocarbon -- 5.8 Genetics of petroleum hydrocarbon biodegradation -- 5.9 Reclamation of petroleum hydrocarbon-contaminated sites -- 5.10 Factors influencing reclamation of petroleum hydrocarbon-contaminated site -- 5.10.1 Bioavailability -- 5.10.2 pH -- 5.10.3 Temperature -- 5.10.4 Oxygen -- 5.10.5 Nutrient and moisture -- 5.10.6 Salinity -- 5.10.7 Soil type -- 5.10.8 Heavy metal contamination -- 5.11 Conclusions and future direction -- References -- Chapter 6 : Recent advancement in microbial remediation of heavy metals from industrial effluents -- 6.1   Introduction -- 6.2   Toxicity of heavy metals -- 6.2.1   Arsenic -- 6.2.2   Lead -- 6.2.3   Mercury -- 6.2.4   Cadmium -- 6.2.5   Chromium -- 6.2.6   Aluminum -- 6.3   Impact of heavy metals on soil -- 6.4   Impact of heavy metals on plants -- 6.5   Impact of heavy metals on aquatic systems -- 6.6   Bioremediation -- 6.6.1   Bio stimulation -- 6.6.2   Bio attenuation (natural attenuation) -- 6.6.3   Bio augmentation -- 6.6.4   Genetically engineered microorganisms in bioremediation -- 6.6.5   Bioventing -- 6.6.6   Biopile -- 6.7   The Several Species of Organisms Utilized in Bioremediation -- 6.7.1   Temperature -- 6.7.2   pH -- 6.7.3   Nutrients -- 6.7.4   Moisture -- 6.7.5   Electron acceptors -- 6.7.6   Factors related to the reactor design -- 6.7.7   Organism-related factors -- 6.7.8   Pollutant-related factors -- 6.7.9   Mechanism of bioremediation -- 6.8   Conclusion -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 7 : Clean production approaches in industries: a case study on pulp and paper production facility applications -- 7.1   Introduction -- 7.1.1   Clean (sustainable) production concept and approach -- 7.1.2   Development of CP concept -- 7.1.3   CP to sustainable production -- 7.1.4   CP and eco-efficiency -- 7.1.5   CP and industrial ecology (symbiosis) -- 7.2   CP benefits/gains -- 7.2.1   Economic gains -- 7.2.2   Compliance with regulations -- 7.2.3   Compliance with legal sanctions -- 7.2.4   Motivation of employees -- 7.2.5   Environmental benefits -- 7.2.6   Increasing institution and product image -- 7.2.7   Reducing possible risks against occupational health and safety -- 7.3   Obstacles in CP Practices -- 7.3.1   Economic challenges -- 7.3.2   Barriers to implementation and management -- 7.4   Components, Tools, and Methods of Clean (Sustainable) Production -- 7.4.1   Clean (sustainable) production components -- 7.4.1.1   Reduction of waste at source -- 7.4.1.2   Reuse/recycle -- 7.4.1.3   Product modification -- 7.4.2   Clean (sustainable) production tools and methods -- 7.4.2.1   Environmental impact assessment -- 7.4.2.2   Life-cycle assessment -- 7.4.2.3   Environmental technology evaluation -- 7.4.2.4   Chemical evaluation -- 7.4.2.5   Waste audit -- 7.4.2.6   Environmental audit -- 7.5   CP Practices Applied in Different Industries -- 7.5.1   Textile production facility: CP practices -- 7.5.1.1   In Korea ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.2   In Peru ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.3   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.2   Rubber production facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5.3   Fertilizer manufacturer facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.4   Leather processing facility CP practices in Croatia ( Greco Initiative &amp;amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.5   Canned food production facility CP practices for water and energy saving in Egypt ( Greco Initiative &amp;amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.6   Oil and soap facility CP practices in Egypt ( Greco Initiative &amp;amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.7   Beverage facility CP practices -- 7.5.7.1   In New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.7.2   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.8   Dairy production facility CP technology practices ( Kotan &amp;amp -- Bakan, 2007 ) -- 7.5.9   Sugar production facility clean (sustainable) production practices ( Greco Initiative &amp;amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.9.1   Facility-1 in Fes, Morocco -- 7.5.9.2   Facility-2 in Slovenia -- 7.5.10   Metal coating and painting facility in CP practices -- 7.5.10.1   Facility-1 ( MPM Publications, 2007 ) -- 7.5.10.2   Facility-2 ( Demirer, 2009 ) -- 7.6   Case Study on CP Practices at Pulp and Paper Production Facility in Turkey -- 7.6.1   Processes in the facility -- 7.6.2   CP practices in the facility -- 7.6.2.1   Selection of production techniques that pollute the environment less -- 7.6.2.2   Correct selection of the treatment system and reuse of waste water in paper processing -- 7.6.2.3   Reducing the amount of chemical substance used -- 7.6.2.4   Evaluation of waste heat and energy saving -- 7.6.2.5   Wastes -- 7.6.2.6   Emissions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.7   Discussion and Conclusion.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Maulin.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Verma, Pradeep</subfield><subfield code="t">Clean Technologies Toward a Sustainable Future</subfield><subfield code="d">London : IWA Publishing,c2023</subfield><subfield code="z">9781789063776</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30662226</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>