Clean Technologies Toward a Sustainable Future : : Physicochemical, Biochemical and Biotechnological Approaches.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:London : : IWA Publishing,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (342 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 12141nam a22004213i 4500
001 50030662226
003 MiAaPQ
005 20240229073851.0
006 m o d |
007 cr cnu||||||||
008 240229s2023 xx o ||||0 eng d
020 |a 9781789063790  |q (electronic bk.) 
020 |z 9781789063776 
035 |a (MiAaPQ)50030662226 
035 |a (Au-PeEL)EBL30662226 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
100 1 |a Verma, Pradeep. 
245 1 0 |a Clean Technologies Toward a Sustainable Future :  |b Physicochemical, Biochemical and Biotechnological Approaches. 
250 |a 1st ed. 
264 1 |a London :  |b IWA Publishing,  |c 2023. 
264 4 |c ©2023. 
300 |a 1 online resource (342 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Cover -- Contents -- The Editors -- Preface -- Acknowledgments -- Chapter 1 : Microbes and wastewater treatment -- 1.1   Introduction -- 1.2   Need for wastewater treatment -- 1.3   Role of microbes in wastewater treatment -- 1.4   Common microbes used in wastewater treatment -- 1.4.1   Bacteria -- 1.4.2   Protozoa -- 1.4.3   Metazoa -- 1.4.4   Filamentous bacteria -- 1.4.5   Algae -- 1.4.6   Fungi -- 1.5   Microbial wastewater techniques -- 1.5.1   Preliminary treatment -- 1.5.2   Primary treatment -- 1.5.3   Secondary treatment -- 1.5.4   Activated sludge process -- 1.5.5   Waste stabilization ponds -- 1.5.5.1   Anaerobic ponds -- 1.5.5.2   Facultative ponds -- 1.5.5.3   Maturation ponds -- 1.5.5.4   High-rate algal ponds -- 1.5.5.5   Tertiary treatment and disinfection -- 1.6   Microbial fuel cells -- 1.6.1   MFC configuration -- 1.6.2   Mechanism of MFC -- 1.6.3   Wastewater from MFC -- 1.7   MFCs with synthetic wastewater as substrates -- 1.8   MFCs with actual wastewater as substrates -- 1.9   Bioremediation -- 1.9.1   Principle -- 1.9.2   Methods of bioremediation of wastewater -- 1.9.2.1   Bacteria -- 1.9.2.2   Applications of oxygenic photosynthetic bacteria (cyanobacteria in bioremediation) -- 1.9.2.3   Algae -- 1.9.2.4   Fungi -- 1.9.2.5   Yeast -- 1.10   Activated sludge process -- 1.11   Conclusion -- References -- Chapter 2 : Elucidation of omics approaches and computational techniques for wastewater treatment: A deep insight -- 2.1   Introduction -- 2.2   Bioremediation -- 2.3   Bioremediation and omics -- 2.4   Bioremediation and genomics -- 2.4.1   In-silico toxicity of the compounds -- 2.5   System biology approach in bioremediation -- 2.6   Metagenomics in bioremediation -- 2.7   Microarray analysis in bioremediation. 
505 8 |a 2.8   Single cell sequencing approach in bioremediation -- 2.9   Next-generation sequencing in bioremediation -- 2.10   Metaproteomic in bioremediation -- 2.11   Meta-transcriptomics in bioremediation -- 2.12   Metabolomics in bioremediation -- 2.13   Molecular docking approaches in bioremediation -- 2.14   Conclusion and future perspective -- References -- Chapter 3 : Bioremediation: role of zooplankton in urban waters -- 3.1   Introduction -- 3.2   Urban waters and zooplankton as a part of its dynamic population -- 3.3   Role of zooplankton in providing significant and valuable role in urban waters -- 3.4   Zooplankton as bioindicator species -- 3.5   Zooplankton-assisted bioremediation in wastewaters -- 3.6   Parameters controlling bioremediation in wastewaters by zooplankton -- 3.7   Cumulative role of zooplankton with other organisms of urban waters -- 3.8   Conclusion -- References -- Chapter 4 : Carbon sequestration: principle and recent advances -- 4.1   Atmospheric Carbon and its Sequestration -- 4.2   Conventional CO 2 capture approaches -- 4.3   Chemical and emerging capture methods -- 4.4   Biological carbon capture and sequestration -- 4.4.1   Carbon capture mechanisms -- 4.4.2   Biological CO 2 sequestration from point sources -- 4.5   Algal biofuels -- 4.5.1   Biodiesel -- 4.5.1.1   Cell cultivation and harvesting -- 4.5.1.2   Lipid extraction and conversion -- 4.5.2   Biocrude and triterpenes -- 4.6   Biogas -- 4.6.1   Anaerobic digestion -- 4.6.2   Biomethane enhancement -- 4.7   Biohydrogen -- 4.7.1   Dark fermentation -- 4.7.2   Photofermentation -- 4.7.3   Biophotolysis -- 4.8   Conclusion -- References -- Chapter 5: Exploiting hydrocarbon-degrading bacteria for reclamation of petroleum hydrocarbon polluted sites -- 5.1 Introduction. 
505 8 |a 5.2 Chemical nature of petroleum hydrocarbons -- 5.3 Sources of petroleum hydrocarbon pollution -- 5.4 Toxicity of petroleum hydrocarbons -- 5.5 Fate of petroleum hydrocarbon in nature -- 5.6 Hydrocarbon degrading bacteria -- 5.7 Degradation pathway of petroleum hydrocarbon -- 5.8 Genetics of petroleum hydrocarbon biodegradation -- 5.9 Reclamation of petroleum hydrocarbon-contaminated sites -- 5.10 Factors influencing reclamation of petroleum hydrocarbon-contaminated site -- 5.10.1 Bioavailability -- 5.10.2 pH -- 5.10.3 Temperature -- 5.10.4 Oxygen -- 5.10.5 Nutrient and moisture -- 5.10.6 Salinity -- 5.10.7 Soil type -- 5.10.8 Heavy metal contamination -- 5.11 Conclusions and future direction -- References -- Chapter 6 : Recent advancement in microbial remediation of heavy metals from industrial effluents -- 6.1   Introduction -- 6.2   Toxicity of heavy metals -- 6.2.1   Arsenic -- 6.2.2   Lead -- 6.2.3   Mercury -- 6.2.4   Cadmium -- 6.2.5   Chromium -- 6.2.6   Aluminum -- 6.3   Impact of heavy metals on soil -- 6.4   Impact of heavy metals on plants -- 6.5   Impact of heavy metals on aquatic systems -- 6.6   Bioremediation -- 6.6.1   Bio stimulation -- 6.6.2   Bio attenuation (natural attenuation) -- 6.6.3   Bio augmentation -- 6.6.4   Genetically engineered microorganisms in bioremediation -- 6.6.5   Bioventing -- 6.6.6   Biopile -- 6.7   The Several Species of Organisms Utilized in Bioremediation -- 6.7.1   Temperature -- 6.7.2   pH -- 6.7.3   Nutrients -- 6.7.4   Moisture -- 6.7.5   Electron acceptors -- 6.7.6   Factors related to the reactor design -- 6.7.7   Organism-related factors -- 6.7.8   Pollutant-related factors -- 6.7.9   Mechanism of bioremediation -- 6.8   Conclusion -- References. 
505 8 |a Chapter 7 : Clean production approaches in industries: a case study on pulp and paper production facility applications -- 7.1   Introduction -- 7.1.1   Clean (sustainable) production concept and approach -- 7.1.2   Development of CP concept -- 7.1.3   CP to sustainable production -- 7.1.4   CP and eco-efficiency -- 7.1.5   CP and industrial ecology (symbiosis) -- 7.2   CP benefits/gains -- 7.2.1   Economic gains -- 7.2.2   Compliance with regulations -- 7.2.3   Compliance with legal sanctions -- 7.2.4   Motivation of employees -- 7.2.5   Environmental benefits -- 7.2.6   Increasing institution and product image -- 7.2.7   Reducing possible risks against occupational health and safety -- 7.3   Obstacles in CP Practices -- 7.3.1   Economic challenges -- 7.3.2   Barriers to implementation and management -- 7.4   Components, Tools, and Methods of Clean (Sustainable) Production -- 7.4.1   Clean (sustainable) production components -- 7.4.1.1   Reduction of waste at source -- 7.4.1.2   Reuse/recycle -- 7.4.1.3   Product modification -- 7.4.2   Clean (sustainable) production tools and methods -- 7.4.2.1   Environmental impact assessment -- 7.4.2.2   Life-cycle assessment -- 7.4.2.3   Environmental technology evaluation -- 7.4.2.4   Chemical evaluation -- 7.4.2.5   Waste audit -- 7.4.2.6   Environmental audit -- 7.5   CP Practices Applied in Different Industries -- 7.5.1   Textile production facility: CP practices -- 7.5.1.1   In Korea ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.2   In Peru ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.1.3   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.2   Rubber production facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ). 
505 8 |a 7.5.3   Fertilizer manufacturer facility CP practices in New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.4   Leather processing facility CP practices in Croatia ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.5   Canned food production facility CP practices for water and energy saving in Egypt ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.6   Oil and soap facility CP practices in Egypt ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.7   Beverage facility CP practices -- 7.5.7.1   In New Zealand ( Asia Pacific Economic cooperation (APEC), 2006 ) -- 7.5.7.2   In Turkey ( TDFT (Turkey Technology Development Foundation), 2011 -- Alkaya et al. , 2011 ) -- 7.5.8   Dairy production facility CP technology practices ( Kotan &amp -- Bakan, 2007 ) -- 7.5.9   Sugar production facility clean (sustainable) production practices ( Greco Initiative &amp -- Regional Activity Centre for Cleaner Production (CP/RAC), 2008 ) -- 7.5.9.1   Facility-1 in Fes, Morocco -- 7.5.9.2   Facility-2 in Slovenia -- 7.5.10   Metal coating and painting facility in CP practices -- 7.5.10.1   Facility-1 ( MPM Publications, 2007 ) -- 7.5.10.2   Facility-2 ( Demirer, 2009 ) -- 7.6   Case Study on CP Practices at Pulp and Paper Production Facility in Turkey -- 7.6.1   Processes in the facility -- 7.6.2   CP practices in the facility -- 7.6.2.1   Selection of production techniques that pollute the environment less -- 7.6.2.2   Correct selection of the treatment system and reuse of waste water in paper processing -- 7.6.2.3   Reducing the amount of chemical substance used -- 7.6.2.4   Evaluation of waste heat and energy saving -- 7.6.2.5   Wastes -- 7.6.2.6   Emissions. 
505 8 |a 7.7   Discussion and Conclusion. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Shah, Maulin. 
776 0 8 |i Print version:  |a Verma, Pradeep  |t Clean Technologies Toward a Sustainable Future  |d London : IWA Publishing,c2023  |z 9781789063776 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30662226  |z Click to View