Applied thermodynamics of fluids / edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Year of Publication:2010
Language:English
Online Access:
Physical Description:xxiii, 509 p. :; ill.
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Machine generated contents note: ch. 1 Introduction / J. Peters
  • References
  • ch. 2 Fundamental Considerations / Cor J. Peters
  • 2.1. Introduction
  • 2.2. Basic Thermodynamics
  • 2.2.1. Homogeneous Functions
  • 2.2.2. Thermodynamic Properties from Differentiation of Fundamental Equations
  • 2.3. Deviation Functions
  • 2.3.1. Residual Functions
  • 2.3.2. Evaluation of Residual Functions
  • 2.4. Mixing and Departure Functions
  • 2.4.1. Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables
  • 2.4.2. Departure Functions with Temperature, Pressure and Composition as the Independent Variables
  • 2.5. Mixing and Excess Functions
  • 2.6. Partial Molar Properties
  • 2.7. Fugacity and Fugacity Coefficients
  • 2.8. Activity Coefficients
  • 2.9. The Phase Rule
  • 2.10. Equilibrium Conditions
  • 2.10.1. Phase Equilibria
  • 2.10.2. Chemical Equilibria
  • 2.11. Stability and the Critical State
  • 2.11.1. Densities and Fields
  • 2.11.2. Stability.
  • 2.11.3. Critical State
  • References
  • ch. 3 The Virial Equation of State / J. P. Martin Trusler
  • 3.1. Introduction
  • 3.1.1. Temperature Dependence of the Virial Coefficients
  • 3.1.2. Composition Dependence of the Virial Coefficients
  • 3.1.3. Convergence of the Virial Series
  • 3.1.4. The Pressure Series
  • 3.2. Theoretical Background
  • 3.2.1. Virial Coefficients of Hard-Core-Square-Well Molecules
  • 3.3. Thermodynamic Properties of Gases
  • 3.3.1. Perfect-gas and Residual Properties
  • 3.3.2. Helmholtz Energy and Gibbs Energy
  • 3.3.3. Perfect-Gas Properties
  • 3.3.4. Residual Properties
  • 3.4. Estimation of Second and Third Virial Coefficients
  • 3.4.1. Application of Intermolecular Potential-energy Functions
  • 3.4.2. Corresponding-states Methods
  • References
  • ch. 4 Cubic and Generalized van der Waals Equations of State / Ioannis G. Economou
  • 4.1. Introduction
  • 4.2. Cubic Equation of State Formulation
  • 4.2.1. The van der Waals Equation of State (1873)
  • 4.2.2. The Redlich and Kwong Equation of State (1949).
  • 4.2.3. The Soave, Redlich and Kwong Equation of State (1972)
  • 4.2.4. The Peng and Robinson Equation of State (1976)
  • 4.2.5. The Patel and Teja (PT) Equation of State (1982)
  • 4.2.6. The α Parameter
  • 4.2.7. Volume Translation
  • 4.2.8. The Elliott, Suresh and Donohue (ESD) Equation of State (1990)
  • 4.2.9. Higher-Order Equations of State Rooted to the Cubic Equations of State
  • 4.2.10. Extension of Cubic Equations of State to Mixtures
  • 4.3. Applications
  • 4.3.1. Pure Components
  • 4.3.2. Oil and Gas Industry
  • Hydrocarbons and Petroleum Fractions
  • 4.3.3. Chemical Industry
  • Polar and Hydrogen Bonding Fluids
  • 4.3.4. Polymers
  • 4.3.5. Transport Properties
  • 4.4. Conclusions
  • References
  • ch. 5 Mixing and Combining Rules / Stanley I. Sandler
  • 5.1. Introduction
  • 5.2. The Virial Equation of State
  • 5.3. Cubic Equations of State
  • 5.3.1. Mixing Rules
  • 5.3.2. Combining Rules
  • 5.3.3. Non-Quadratic Mixing and Combining Rules
  • 5.3.4. Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.
  • 5.4. Multi-Parameter Equations of State
  • 5.4.1. Benedict, Webb, and Rubin Equation of State
  • 5.4.2. Generalization with the Acentric Factor
  • 5.4.3. Helmholtz-Function Equations of State
  • 5.5. Mixing Rules for Hard Spheres and Association
  • 5.5.1. Mixing and Combining Rules for SAFT
  • 5.5.2. Cubic Plus Association Equation of State
  • References
  • ch. 6 The Corresponding-States Principle / James F. Ely
  • 6.1. Introduction
  • 6.2. Theoretical Considerations
  • 6.3. Determination of Shape Factors
  • 6.3.1. Other Reference Fluids
  • 6.3.2. Exact Shape Factors
  • 6.3.3. Shape Factors from Generalized Equations of State
  • 6.4. Mixtures
  • 6.4.1. van der Waals One-Fluid Theory
  • 6.4.2. Mixture Corresponding-States Relations
  • 6.5. Applications of Corresponding-States Theory
  • 6.5.1. Extended Corresponding-States for Natural Gas Systems
  • 6.5.2. Extended Lee-Kesler
  • 6.5.3. Generalized Crossover Cubic Equation of State
  • 6.6. Conclusions
  • References
  • ch. 7 Thermodynamics of Fluids at Meso and Nano Scales / Christopher E. Bertrand.
  • 7.1. Introduction
  • 7.2. Thermodynamic Approach to Meso-Heterogeneous Systems
  • 7.2.1. Equilibrium Fluctuations
  • 7.2.2. Local Helmholtz Energy
  • 7.3. Applications of Meso-Thermodynamics
  • 7.3.1. Van der Waals Theory of a Smooth Interface
  • 7.3.2. Polymer Chain in a Dilute Solution
  • 7.3.3. Building a Nanoparticle Through Self Assembly
  • 7.3.4. Modulated Fluid Phases
  • 7.4. Meso-Thermodynamics of Criticality
  • 7.4.1. Critical Fluctuations
  • 7.4.2. Scaling Relations
  • 7.4.3. Near-Critical Interface
  • 7.4.4. Divergence of Tolman's Length
  • 7.5. Competition of Meso-Scales
  • 7.5.1. Crossover to Tricriticality in Polymer Solutions
  • 7.5.2. Tolman's Length in Polymer Solutions
  • 7.5.3. Finite-size Scaling
  • 7.6. Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation
  • 7.6.1. Relaxation of Fluctuations
  • 7.6.2. Critical Slowing Down
  • 7.6.3. Homogeneous Nucleation
  • 7.6.4. Spinodal Decomposition
  • 7.7. Conclusion
  • References
  • ch. 8 SAFT Associating Fluids and Fluid Mixtures / Amparo Galindo.
  • 8.1. Introduction
  • 8.2. Statistical Mechanical Theories of Association and Wertheim's Theory
  • 8.3. SAFT Equations of State
  • 8.3.1. SAFT-HS and SAFT-HR
  • 8.3.2. Soft-SAFT
  • 8.3.3. SAFT-VR
  • 8.3.4. PC-SAFT
  • 8.3.5. Summary
  • 8.4. Extensions of the SAFT Approach
  • 8.4.1. Modelling the Critical Region
  • 8.4.2. Polar Fluids
  • 8.4.3. Ion-Containing Fluids
  • 8.4.4. Modelling Inhomogeneous Fluids
  • 8.4.5. Dense Phases: Liquid Crystals and Solids
  • 8.5. Parameter Estimation: Towards more Predictive Approaches
  • 8.5.1. Pure-component Parameter Estimation
  • 8.5.2. Use of Quantum Mechanics in SAFT Equations of State
  • 8.5.3. Unlike Binary Intermolecular Parameters
  • 8.6. SAFT Group-Contribution Approaches
  • 8.6.1. Homonuclear Group-Contribution Models in SAFT
  • 8.6.2. Heteronuclear Group Contribution Models in SAFT
  • 8.7. Concluding Remarks
  • References
  • ch. 9 Polydisperse Fluids / Dieter Browarzik
  • 9.1. Introduction
  • 9.2. Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.
  • 9.3. Approaches to Polydispersity
  • 9.3.1. The Pseudo-component Method
  • 9.3.2. Continuous Thermodynamics
  • 9.4. Application to Real Systems
  • 9.4.1. Polymer Systems
  • 9.4.2. Petroleum Fluids, Asphaltenes, Waxes and Other Applications
  • 9.5. Conclusions
  • References
  • ch. 10 Thermodynamic Behaviour of Fluids near Critical Points / Mikhail A. Anisimov
  • 10.1. Introduction
  • 10.2. General Theory of Critical Behaviour
  • 10.2.1. Scaling Fields, Critical Exponents, and Critical Amplitudes
  • 10.2.2. Parametric Equation of State
  • 10.3. One-Component Fluids
  • 10.3.1. Simple Scaling
  • 10.3.2. Revised Scaling
  • 10.3.3. Complete Scaling
  • 10.3.4. Vapour-Liquid Equilibrium
  • 10.3.5. Symmetric Corrections to Scaling
  • 10.4. Binary Fluid Mixtures
  • 10.4.1. Isomorphic Critical Behaviour of Mixtures
  • 10.4.2. Incompressible Liquid Mixtures
  • 10.4.3. Weakly Compressible Liquid Mixtures
  • 10.4.4. Compressible Fluid Mixtures
  • 10.4.5. Dilute Solutions
  • 10.5. Crossover Critical Behaviour
  • 10.5.1. Crossover from Ising-like to Mean-Field Critical Behaviour.
  • 10.5.2. Effective Critical Exponents
  • 10.5.3. Global Crossover Behaviour of Fluids
  • 10.6. Discussion
  • Acknowledgements
  • References
  • ch. 11 Phase Behaviour of Ionic Liquid Systems / Cor J. Peters
  • 11.1. Introduction
  • 11.2. Phase Behaviour of Binary Ionic Liquid Systems
  • 11.2.1. Phase Behaviour of (Ionic Liquid + Gas Mixtures)
  • 11.2.2. Phase Behaviour of (Ionic Liquid + Water)
  • 11.2.3. Phase Behaviour of (Ionic Liquid + Organic)
  • 11.3. Phase Behaviour of Ternary Ionic Liquid Systems
  • 11.3.1. Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic)
  • 11.3.2. Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic)
  • 11.3.3. Phase Behaviour of (Ionic Liquid + Water + Alcohol)
  • 11.3.4. Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures
  • 11.4. Modeling of the Phase Behaviour of Ionic Liquid Systems
  • 11.4.1. Molecular Simulations
  • 11.4.2. Excess Gibbs-energy Methods
  • 11.4.3. Equation of State Modeling
  • 11.4.4. Quantum Chemical Methods
  • References
  • ch. 12 Multi-parameter Equations of State for Pure Fluids and Mixtures / Roland Span.
  • 12.1. Introduction
  • 12.2. The Development of a Thermodynamic Property Formulation
  • 12.3. Fitting an Equation of State to Experimental Data
  • 12.3.1. Recent Nonlinear Fitting Methods
  • 12.4. Pressure-Explicit Equations of State
  • 12.4.1. Cubic Equations
  • 12.4.2. The Benedict-Webb-Rubin Equation of State
  • 12.4.3. The Bender Equation of State
  • 12.4.4. The Jacobsen-Stewart Equation of State
  • 12.4.5. Thermodynamic Properties from Pressure-Explicit Equations of State
  • 12.5. Fundamental Equations
  • 12.5.1. The Equation of Keenan, Keyes, Hill, and Moore
  • 12.5.2. The Equations of Haar, Gallagher, and Kell
  • 12.5.3. The Equation of Schmidt and Wagner
  • 12.5.4. Reference Equations of Wagner
  • 12.5.5. Technical Equations of Span and of Lemmon
  • 12.5.6. Recent Equations of State.
  • Note continued--
  • 13.6. Concluding Remarks
  • References
  • ch. 14 Applied Non-Equilibrium Thermodynamics / Dick Bedeaux
  • 14.1. Introduction
  • 14.1.1. A Systematic Thermodynamic Theory for Transport
  • 14.1.2. On the Validity of the Assumption of Local Equilibrium
  • 14.1.3. Concluding remarks
  • 14.2. Fluxes and Forces from the Second Law of Thermodynamics
  • 14.2.1. Continuous phases
  • 14.2.2. Maxwell-Stefan Equations
  • 14.2.3. Discontinuous Systems
  • 14.2.4. Concluding Remarks
  • 14.3. Chemical Reactions
  • 14.3.1. Thermal Diffusion in a Reacting System
  • 14.3.2. Mesoscopic Description Along the Reaction Coordinate
  • 14.3.3. Heterogeneous Catalysis
  • 14.3.4. Concluding Remarks
  • 14.4. The Path of Energy-Efficient Operation
  • 14.4.1. An Optimisation Procedure
  • 14.4.2. Optimal Heat Exchange
  • 14.4.3. The Highway Hypothesis for a Chemical Reactor
  • 14.4.4. Energy-Efficient Production of Hydrogen Gas
  • 14.4. Conclusions
  • References.