Applied thermodynamics of fluids / edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Year of Publication:2010
Language:English
Online Access:
Physical Description:xxiii, 509 p. :; ill.
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5001185176
ctrlnum (MiAaPQ)5001185176
(Au-PeEL)EBL1185176
(CaPaEBR)ebr10627698
(CaONFJC)MIL872472
(OCoLC)823728351
collection bib_alma
record_format marc
spelling Applied thermodynamics of fluids [electronic resource] / edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.
Cambridge : RSC Pub., c2010.
xxiii, 509 p. : ill.
Includes bibliographical references and index.
Machine generated contents note: ch. 1 Introduction / J. Peters -- References -- ch. 2 Fundamental Considerations / Cor J. Peters -- 2.1. Introduction -- 2.2. Basic Thermodynamics -- 2.2.1. Homogeneous Functions -- 2.2.2. Thermodynamic Properties from Differentiation of Fundamental Equations -- 2.3. Deviation Functions -- 2.3.1. Residual Functions -- 2.3.2. Evaluation of Residual Functions -- 2.4. Mixing and Departure Functions -- 2.4.1. Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables -- 2.4.2. Departure Functions with Temperature, Pressure and Composition as the Independent Variables -- 2.5. Mixing and Excess Functions -- 2.6. Partial Molar Properties -- 2.7. Fugacity and Fugacity Coefficients -- 2.8. Activity Coefficients -- 2.9. The Phase Rule -- 2.10. Equilibrium Conditions -- 2.10.1. Phase Equilibria -- 2.10.2. Chemical Equilibria -- 2.11. Stability and the Critical State -- 2.11.1. Densities and Fields -- 2.11.2. Stability.
2.11.3. Critical State -- References -- ch. 3 The Virial Equation of State / J. P. Martin Trusler -- 3.1. Introduction -- 3.1.1. Temperature Dependence of the Virial Coefficients -- 3.1.2. Composition Dependence of the Virial Coefficients -- 3.1.3. Convergence of the Virial Series -- 3.1.4. The Pressure Series -- 3.2. Theoretical Background -- 3.2.1. Virial Coefficients of Hard-Core-Square-Well Molecules -- 3.3. Thermodynamic Properties of Gases -- 3.3.1. Perfect-gas and Residual Properties -- 3.3.2. Helmholtz Energy and Gibbs Energy -- 3.3.3. Perfect-Gas Properties -- 3.3.4. Residual Properties -- 3.4. Estimation of Second and Third Virial Coefficients -- 3.4.1. Application of Intermolecular Potential-energy Functions -- 3.4.2. Corresponding-states Methods -- References -- ch. 4 Cubic and Generalized van der Waals Equations of State / Ioannis G. Economou -- 4.1. Introduction -- 4.2. Cubic Equation of State Formulation -- 4.2.1. The van der Waals Equation of State (1873) -- 4.2.2. The Redlich and Kwong Equation of State (1949).
4.2.3. The Soave, Redlich and Kwong Equation of State (1972) -- 4.2.4. The Peng and Robinson Equation of State (1976) -- 4.2.5. The Patel and Teja (PT) Equation of State (1982) -- 4.2.6. The α Parameter -- 4.2.7. Volume Translation -- 4.2.8. The Elliott, Suresh and Donohue (ESD) Equation of State (1990) -- 4.2.9. Higher-Order Equations of State Rooted to the Cubic Equations of State -- 4.2.10. Extension of Cubic Equations of State to Mixtures -- 4.3. Applications -- 4.3.1. Pure Components -- 4.3.2. Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions -- 4.3.3. Chemical Industry -- Polar and Hydrogen Bonding Fluids -- 4.3.4. Polymers -- 4.3.5. Transport Properties -- 4.4. Conclusions -- References -- ch. 5 Mixing and Combining Rules / Stanley I. Sandler -- 5.1. Introduction -- 5.2. The Virial Equation of State -- 5.3. Cubic Equations of State -- 5.3.1. Mixing Rules -- 5.3.2. Combining Rules -- 5.3.3. Non-Quadratic Mixing and Combining Rules -- 5.3.4. Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.
5.4. Multi-Parameter Equations of State -- 5.4.1. Benedict, Webb, and Rubin Equation of State -- 5.4.2. Generalization with the Acentric Factor -- 5.4.3. Helmholtz-Function Equations of State -- 5.5. Mixing Rules for Hard Spheres and Association -- 5.5.1. Mixing and Combining Rules for SAFT -- 5.5.2. Cubic Plus Association Equation of State -- References -- ch. 6 The Corresponding-States Principle / James F. Ely -- 6.1. Introduction -- 6.2. Theoretical Considerations -- 6.3. Determination of Shape Factors -- 6.3.1. Other Reference Fluids -- 6.3.2. Exact Shape Factors -- 6.3.3. Shape Factors from Generalized Equations of State -- 6.4. Mixtures -- 6.4.1. van der Waals One-Fluid Theory -- 6.4.2. Mixture Corresponding-States Relations -- 6.5. Applications of Corresponding-States Theory -- 6.5.1. Extended Corresponding-States for Natural Gas Systems -- 6.5.2. Extended Lee-Kesler -- 6.5.3. Generalized Crossover Cubic Equation of State -- 6.6. Conclusions -- References -- ch. 7 Thermodynamics of Fluids at Meso and Nano Scales / Christopher E. Bertrand.
7.1. Introduction -- 7.2. Thermodynamic Approach to Meso-Heterogeneous Systems -- 7.2.1. Equilibrium Fluctuations -- 7.2.2. Local Helmholtz Energy -- 7.3. Applications of Meso-Thermodynamics -- 7.3.1. Van der Waals Theory of a Smooth Interface -- 7.3.2. Polymer Chain in a Dilute Solution -- 7.3.3. Building a Nanoparticle Through Self Assembly -- 7.3.4. Modulated Fluid Phases -- 7.4. Meso-Thermodynamics of Criticality -- 7.4.1. Critical Fluctuations -- 7.4.2. Scaling Relations -- 7.4.3. Near-Critical Interface -- 7.4.4. Divergence of Tolman's Length -- 7.5. Competition of Meso-Scales -- 7.5.1. Crossover to Tricriticality in Polymer Solutions -- 7.5.2. Tolman's Length in Polymer Solutions -- 7.5.3. Finite-size Scaling -- 7.6. Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation -- 7.6.1. Relaxation of Fluctuations -- 7.6.2. Critical Slowing Down -- 7.6.3. Homogeneous Nucleation -- 7.6.4. Spinodal Decomposition -- 7.7. Conclusion -- References -- ch. 8 SAFT Associating Fluids and Fluid Mixtures / Amparo Galindo.
8.1. Introduction -- 8.2. Statistical Mechanical Theories of Association and Wertheim's Theory -- 8.3. SAFT Equations of State -- 8.3.1. SAFT-HS and SAFT-HR -- 8.3.2. Soft-SAFT -- 8.3.3. SAFT-VR -- 8.3.4. PC-SAFT -- 8.3.5. Summary -- 8.4. Extensions of the SAFT Approach -- 8.4.1. Modelling the Critical Region -- 8.4.2. Polar Fluids -- 8.4.3. Ion-Containing Fluids -- 8.4.4. Modelling Inhomogeneous Fluids -- 8.4.5. Dense Phases: Liquid Crystals and Solids -- 8.5. Parameter Estimation: Towards more Predictive Approaches -- 8.5.1. Pure-component Parameter Estimation -- 8.5.2. Use of Quantum Mechanics in SAFT Equations of State -- 8.5.3. Unlike Binary Intermolecular Parameters -- 8.6. SAFT Group-Contribution Approaches -- 8.6.1. Homonuclear Group-Contribution Models in SAFT -- 8.6.2. Heteronuclear Group Contribution Models in SAFT -- 8.7. Concluding Remarks -- References -- ch. 9 Polydisperse Fluids / Dieter Browarzik -- 9.1. Introduction -- 9.2. Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.
9.3. Approaches to Polydispersity -- 9.3.1. The Pseudo-component Method -- 9.3.2. Continuous Thermodynamics -- 9.4. Application to Real Systems -- 9.4.1. Polymer Systems -- 9.4.2. Petroleum Fluids, Asphaltenes, Waxes and Other Applications -- 9.5. Conclusions -- References -- ch. 10 Thermodynamic Behaviour of Fluids near Critical Points / Mikhail A. Anisimov -- 10.1. Introduction -- 10.2. General Theory of Critical Behaviour -- 10.2.1. Scaling Fields, Critical Exponents, and Critical Amplitudes -- 10.2.2. Parametric Equation of State -- 10.3. One-Component Fluids -- 10.3.1. Simple Scaling -- 10.3.2. Revised Scaling -- 10.3.3. Complete Scaling -- 10.3.4. Vapour-Liquid Equilibrium -- 10.3.5. Symmetric Corrections to Scaling -- 10.4. Binary Fluid Mixtures -- 10.4.1. Isomorphic Critical Behaviour of Mixtures -- 10.4.2. Incompressible Liquid Mixtures -- 10.4.3. Weakly Compressible Liquid Mixtures -- 10.4.4. Compressible Fluid Mixtures -- 10.4.5. Dilute Solutions -- 10.5. Crossover Critical Behaviour -- 10.5.1. Crossover from Ising-like to Mean-Field Critical Behaviour.
10.5.2. Effective Critical Exponents -- 10.5.3. Global Crossover Behaviour of Fluids -- 10.6. Discussion -- Acknowledgements -- References -- ch. 11 Phase Behaviour of Ionic Liquid Systems / Cor J. Peters -- 11.1. Introduction -- 11.2. Phase Behaviour of Binary Ionic Liquid Systems -- 11.2.1. Phase Behaviour of (Ionic Liquid + Gas Mixtures) -- 11.2.2. Phase Behaviour of (Ionic Liquid + Water) -- 11.2.3. Phase Behaviour of (Ionic Liquid + Organic) -- 11.3. Phase Behaviour of Ternary Ionic Liquid Systems -- 11.3.1. Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) -- 11.3.2. Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) -- 11.3.3. Phase Behaviour of (Ionic Liquid + Water + Alcohol) -- 11.3.4. Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures -- 11.4. Modeling of the Phase Behaviour of Ionic Liquid Systems -- 11.4.1. Molecular Simulations -- 11.4.2. Excess Gibbs-energy Methods -- 11.4.3. Equation of State Modeling -- 11.4.4. Quantum Chemical Methods -- References -- ch. 12 Multi-parameter Equations of State for Pure Fluids and Mixtures / Roland Span.
12.1. Introduction -- 12.2. The Development of a Thermodynamic Property Formulation -- 12.3. Fitting an Equation of State to Experimental Data -- 12.3.1. Recent Nonlinear Fitting Methods -- 12.4. Pressure-Explicit Equations of State -- 12.4.1. Cubic Equations -- 12.4.2. The Benedict-Webb-Rubin Equation of State -- 12.4.3. The Bender Equation of State -- 12.4.4. The Jacobsen-Stewart Equation of State -- 12.4.5. Thermodynamic Properties from Pressure-Explicit Equations of State -- 12.5. Fundamental Equations -- 12.5.1. The Equation of Keenan, Keyes, Hill, and Moore -- 12.5.2. The Equations of Haar, Gallagher, and Kell -- 12.5.3. The Equation of Schmidt and Wagner -- 12.5.4. Reference Equations of Wagner -- 12.5.5. Technical Equations of Span and of Lemmon -- 12.5.6. Recent Equations of State.
Note continued--
13.6. Concluding Remarks -- References -- ch. 14 Applied Non-Equilibrium Thermodynamics / Dick Bedeaux -- 14.1. Introduction -- 14.1.1. A Systematic Thermodynamic Theory for Transport -- 14.1.2. On the Validity of the Assumption of Local Equilibrium -- 14.1.3. Concluding remarks -- 14.2. Fluxes and Forces from the Second Law of Thermodynamics -- 14.2.1. Continuous phases -- 14.2.2. Maxwell-Stefan Equations -- 14.2.3. Discontinuous Systems -- 14.2.4. Concluding Remarks -- 14.3. Chemical Reactions -- 14.3.1. Thermal Diffusion in a Reacting System -- 14.3.2. Mesoscopic Description Along the Reaction Coordinate -- 14.3.3. Heterogeneous Catalysis -- 14.3.4. Concluding Remarks -- 14.4. The Path of Energy-Efficient Operation -- 14.4.1. An Optimisation Procedure -- 14.4.2. Optimal Heat Exchange -- 14.4.3. The Highway Hypothesis for a Chemical Reactor -- 14.4.4. Energy-Efficient Production of Hydrogen Gas -- 14.4. Conclusions -- References.
Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
Fluids Thermal properties.
Electronic books.
Goodwin, A. R. H.
Sengers, J. V.
Peters, Cor J.
Royal Society of Chemistry (Great Britain)
International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division.
International Association of Chemical Thermodynamics.
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=1185176 Click to View
language English
format Electronic
eBook
author2 Goodwin, A. R. H.
Sengers, J. V.
Peters, Cor J.
Royal Society of Chemistry (Great Britain)
International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division.
International Association of Chemical Thermodynamics.
ProQuest (Firm)
author_facet Goodwin, A. R. H.
Sengers, J. V.
Peters, Cor J.
Royal Society of Chemistry (Great Britain)
International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division.
International Association of Chemical Thermodynamics.
ProQuest (Firm)
Royal Society of Chemistry (Great Britain)
International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division.
International Association of Chemical Thermodynamics.
ProQuest (Firm)
author2_variant a r h g arh arhg
j v s jv jvs
c j p cj cjp
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_corporate Royal Society of Chemistry (Great Britain)
International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division.
International Association of Chemical Thermodynamics.
ProQuest (Firm)
author_sort Goodwin, A. R. H.
author_additional J. Peters --
Cor J. Peters --
J. P. Martin Trusler --
Ioannis G. Economou --
Stanley I. Sandler --
James F. Ely --
Christopher E. Bertrand.
Amparo Galindo.
Dieter Browarzik --
Mikhail A. Anisimov --
Roland Span.
Dick Bedeaux --
title Applied thermodynamics of fluids
spellingShingle Applied thermodynamics of fluids
Note continued--
Introduction /
References --
Fundamental Considerations /
Introduction --
Basic Thermodynamics --
Homogeneous Functions --
Thermodynamic Properties from Differentiation of Fundamental Equations --
Deviation Functions --
Residual Functions --
Evaluation of Residual Functions --
Mixing and Departure Functions --
Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables --
Departure Functions with Temperature, Pressure and Composition as the Independent Variables --
Mixing and Excess Functions --
Partial Molar Properties --
Fugacity and Fugacity Coefficients --
Activity Coefficients --
The Phase Rule --
Equilibrium Conditions --
Phase Equilibria --
Chemical Equilibria --
Stability and the Critical State --
Densities and Fields --
Stability.
Critical State --
The Virial Equation of State /
Temperature Dependence of the Virial Coefficients --
Composition Dependence of the Virial Coefficients --
Convergence of the Virial Series --
The Pressure Series --
Theoretical Background --
Virial Coefficients of Hard-Core-Square-Well Molecules --
Thermodynamic Properties of Gases --
Perfect-gas and Residual Properties --
Helmholtz Energy and Gibbs Energy --
Perfect-Gas Properties --
Residual Properties --
Estimation of Second and Third Virial Coefficients --
Application of Intermolecular Potential-energy Functions --
Corresponding-states Methods --
Cubic and Generalized van der Waals Equations of State /
Cubic Equation of State Formulation --
The van der Waals Equation of State (1873) --
The Redlich and Kwong Equation of State (1949).
The Soave, Redlich and Kwong Equation of State (1972) --
The Peng and Robinson Equation of State (1976) --
The Patel and Teja (PT) Equation of State (1982) --
The α Parameter --
Volume Translation --
The Elliott, Suresh and Donohue (ESD) Equation of State (1990) --
Higher-Order Equations of State Rooted to the Cubic Equations of State --
Extension of Cubic Equations of State to Mixtures --
Applications --
Pure Components --
Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions --
Chemical Industry -- Polar and Hydrogen Bonding Fluids --
Polymers --
Transport Properties --
Conclusions --
Mixing and Combining Rules /
The Virial Equation of State --
Cubic Equations of State --
Mixing Rules --
Combining Rules --
Non-Quadratic Mixing and Combining Rules --
Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.
Multi-Parameter Equations of State --
Benedict, Webb, and Rubin Equation of State --
Generalization with the Acentric Factor --
Helmholtz-Function Equations of State --
Mixing Rules for Hard Spheres and Association --
Mixing and Combining Rules for SAFT --
Cubic Plus Association Equation of State --
The Corresponding-States Principle /
Theoretical Considerations --
Determination of Shape Factors --
Other Reference Fluids --
Exact Shape Factors --
Shape Factors from Generalized Equations of State --
Mixtures --
van der Waals One-Fluid Theory --
Mixture Corresponding-States Relations --
Applications of Corresponding-States Theory --
Extended Corresponding-States for Natural Gas Systems --
Extended Lee-Kesler --
Generalized Crossover Cubic Equation of State --
Thermodynamics of Fluids at Meso and Nano Scales /
Thermodynamic Approach to Meso-Heterogeneous Systems --
Equilibrium Fluctuations --
Local Helmholtz Energy --
Applications of Meso-Thermodynamics --
Van der Waals Theory of a Smooth Interface --
Polymer Chain in a Dilute Solution --
Building a Nanoparticle Through Self Assembly --
Modulated Fluid Phases --
Meso-Thermodynamics of Criticality --
Critical Fluctuations --
Scaling Relations --
Near-Critical Interface --
Divergence of Tolman's Length --
Competition of Meso-Scales --
Crossover to Tricriticality in Polymer Solutions --
Tolman's Length in Polymer Solutions --
Finite-size Scaling --
Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation --
Relaxation of Fluctuations --
Critical Slowing Down --
Homogeneous Nucleation --
Spinodal Decomposition --
Conclusion --
SAFT Associating Fluids and Fluid Mixtures /
Statistical Mechanical Theories of Association and Wertheim's Theory --
SAFT Equations of State --
SAFT-HS and SAFT-HR --
Soft-SAFT --
SAFT-VR --
PC-SAFT --
Summary --
Extensions of the SAFT Approach --
Modelling the Critical Region --
Polar Fluids --
Ion-Containing Fluids --
Modelling Inhomogeneous Fluids --
Dense Phases: Liquid Crystals and Solids --
Parameter Estimation: Towards more Predictive Approaches --
Pure-component Parameter Estimation --
Use of Quantum Mechanics in SAFT Equations of State --
Unlike Binary Intermolecular Parameters --
SAFT Group-Contribution Approaches --
Homonuclear Group-Contribution Models in SAFT --
Heteronuclear Group Contribution Models in SAFT --
Concluding Remarks --
Polydisperse Fluids /
Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.
Approaches to Polydispersity --
The Pseudo-component Method --
Continuous Thermodynamics --
Application to Real Systems --
Polymer Systems --
Petroleum Fluids, Asphaltenes, Waxes and Other Applications --
Thermodynamic Behaviour of Fluids near Critical Points /
General Theory of Critical Behaviour --
Scaling Fields, Critical Exponents, and Critical Amplitudes --
Parametric Equation of State --
One-Component Fluids --
Simple Scaling --
Revised Scaling --
Complete Scaling --
Vapour-Liquid Equilibrium --
Symmetric Corrections to Scaling --
Binary Fluid Mixtures --
Isomorphic Critical Behaviour of Mixtures --
Incompressible Liquid Mixtures --
Weakly Compressible Liquid Mixtures --
Compressible Fluid Mixtures --
Dilute Solutions --
Crossover Critical Behaviour --
Crossover from Ising-like to Mean-Field Critical Behaviour.
Effective Critical Exponents --
Global Crossover Behaviour of Fluids --
Discussion --
Acknowledgements --
Phase Behaviour of Ionic Liquid Systems /
Phase Behaviour of Binary Ionic Liquid Systems --
Phase Behaviour of (Ionic Liquid + Gas Mixtures) --
Phase Behaviour of (Ionic Liquid + Water) --
Phase Behaviour of (Ionic Liquid + Organic) --
Phase Behaviour of Ternary Ionic Liquid Systems --
Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) --
Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) --
Phase Behaviour of (Ionic Liquid + Water + Alcohol) --
Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures --
Modeling of the Phase Behaviour of Ionic Liquid Systems --
Molecular Simulations --
Excess Gibbs-energy Methods --
Equation of State Modeling --
Quantum Chemical Methods --
Multi-parameter Equations of State for Pure Fluids and Mixtures /
The Development of a Thermodynamic Property Formulation --
Fitting an Equation of State to Experimental Data --
Recent Nonlinear Fitting Methods --
Pressure-Explicit Equations of State --
Cubic Equations --
The Benedict-Webb-Rubin Equation of State --
The Bender Equation of State --
The Jacobsen-Stewart Equation of State --
Thermodynamic Properties from Pressure-Explicit Equations of State --
Fundamental Equations --
The Equation of Keenan, Keyes, Hill, and Moore --
The Equations of Haar, Gallagher, and Kell --
The Equation of Schmidt and Wagner --
Reference Equations of Wagner --
Technical Equations of Span and of Lemmon --
Recent Equations of State.
Applied Non-Equilibrium Thermodynamics /
A Systematic Thermodynamic Theory for Transport --
On the Validity of the Assumption of Local Equilibrium --
Concluding remarks --
Fluxes and Forces from the Second Law of Thermodynamics --
Continuous phases --
Maxwell-Stefan Equations --
Discontinuous Systems --
Chemical Reactions --
Thermal Diffusion in a Reacting System --
Mesoscopic Description Along the Reaction Coordinate --
Heterogeneous Catalysis --
The Path of Energy-Efficient Operation --
An Optimisation Procedure --
Optimal Heat Exchange --
The Highway Hypothesis for a Chemical Reactor --
Energy-Efficient Production of Hydrogen Gas --
References.
title_full Applied thermodynamics of fluids [electronic resource] / edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.
title_fullStr Applied thermodynamics of fluids [electronic resource] / edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.
title_full_unstemmed Applied thermodynamics of fluids [electronic resource] / edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.
title_auth Applied thermodynamics of fluids
title_alt Introduction /
References --
Fundamental Considerations /
Introduction --
Basic Thermodynamics --
Homogeneous Functions --
Thermodynamic Properties from Differentiation of Fundamental Equations --
Deviation Functions --
Residual Functions --
Evaluation of Residual Functions --
Mixing and Departure Functions --
Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables --
Departure Functions with Temperature, Pressure and Composition as the Independent Variables --
Mixing and Excess Functions --
Partial Molar Properties --
Fugacity and Fugacity Coefficients --
Activity Coefficients --
The Phase Rule --
Equilibrium Conditions --
Phase Equilibria --
Chemical Equilibria --
Stability and the Critical State --
Densities and Fields --
Stability.
Critical State --
The Virial Equation of State /
Temperature Dependence of the Virial Coefficients --
Composition Dependence of the Virial Coefficients --
Convergence of the Virial Series --
The Pressure Series --
Theoretical Background --
Virial Coefficients of Hard-Core-Square-Well Molecules --
Thermodynamic Properties of Gases --
Perfect-gas and Residual Properties --
Helmholtz Energy and Gibbs Energy --
Perfect-Gas Properties --
Residual Properties --
Estimation of Second and Third Virial Coefficients --
Application of Intermolecular Potential-energy Functions --
Corresponding-states Methods --
Cubic and Generalized van der Waals Equations of State /
Cubic Equation of State Formulation --
The van der Waals Equation of State (1873) --
The Redlich and Kwong Equation of State (1949).
The Soave, Redlich and Kwong Equation of State (1972) --
The Peng and Robinson Equation of State (1976) --
The Patel and Teja (PT) Equation of State (1982) --
The α Parameter --
Volume Translation --
The Elliott, Suresh and Donohue (ESD) Equation of State (1990) --
Higher-Order Equations of State Rooted to the Cubic Equations of State --
Extension of Cubic Equations of State to Mixtures --
Applications --
Pure Components --
Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions --
Chemical Industry -- Polar and Hydrogen Bonding Fluids --
Polymers --
Transport Properties --
Conclusions --
Mixing and Combining Rules /
The Virial Equation of State --
Cubic Equations of State --
Mixing Rules --
Combining Rules --
Non-Quadratic Mixing and Combining Rules --
Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.
Multi-Parameter Equations of State --
Benedict, Webb, and Rubin Equation of State --
Generalization with the Acentric Factor --
Helmholtz-Function Equations of State --
Mixing Rules for Hard Spheres and Association --
Mixing and Combining Rules for SAFT --
Cubic Plus Association Equation of State --
The Corresponding-States Principle /
Theoretical Considerations --
Determination of Shape Factors --
Other Reference Fluids --
Exact Shape Factors --
Shape Factors from Generalized Equations of State --
Mixtures --
van der Waals One-Fluid Theory --
Mixture Corresponding-States Relations --
Applications of Corresponding-States Theory --
Extended Corresponding-States for Natural Gas Systems --
Extended Lee-Kesler --
Generalized Crossover Cubic Equation of State --
Thermodynamics of Fluids at Meso and Nano Scales /
Thermodynamic Approach to Meso-Heterogeneous Systems --
Equilibrium Fluctuations --
Local Helmholtz Energy --
Applications of Meso-Thermodynamics --
Van der Waals Theory of a Smooth Interface --
Polymer Chain in a Dilute Solution --
Building a Nanoparticle Through Self Assembly --
Modulated Fluid Phases --
Meso-Thermodynamics of Criticality --
Critical Fluctuations --
Scaling Relations --
Near-Critical Interface --
Divergence of Tolman's Length --
Competition of Meso-Scales --
Crossover to Tricriticality in Polymer Solutions --
Tolman's Length in Polymer Solutions --
Finite-size Scaling --
Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation --
Relaxation of Fluctuations --
Critical Slowing Down --
Homogeneous Nucleation --
Spinodal Decomposition --
Conclusion --
SAFT Associating Fluids and Fluid Mixtures /
Statistical Mechanical Theories of Association and Wertheim's Theory --
SAFT Equations of State --
SAFT-HS and SAFT-HR --
Soft-SAFT --
SAFT-VR --
PC-SAFT --
Summary --
Extensions of the SAFT Approach --
Modelling the Critical Region --
Polar Fluids --
Ion-Containing Fluids --
Modelling Inhomogeneous Fluids --
Dense Phases: Liquid Crystals and Solids --
Parameter Estimation: Towards more Predictive Approaches --
Pure-component Parameter Estimation --
Use of Quantum Mechanics in SAFT Equations of State --
Unlike Binary Intermolecular Parameters --
SAFT Group-Contribution Approaches --
Homonuclear Group-Contribution Models in SAFT --
Heteronuclear Group Contribution Models in SAFT --
Concluding Remarks --
Polydisperse Fluids /
Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.
Approaches to Polydispersity --
The Pseudo-component Method --
Continuous Thermodynamics --
Application to Real Systems --
Polymer Systems --
Petroleum Fluids, Asphaltenes, Waxes and Other Applications --
Thermodynamic Behaviour of Fluids near Critical Points /
General Theory of Critical Behaviour --
Scaling Fields, Critical Exponents, and Critical Amplitudes --
Parametric Equation of State --
One-Component Fluids --
Simple Scaling --
Revised Scaling --
Complete Scaling --
Vapour-Liquid Equilibrium --
Symmetric Corrections to Scaling --
Binary Fluid Mixtures --
Isomorphic Critical Behaviour of Mixtures --
Incompressible Liquid Mixtures --
Weakly Compressible Liquid Mixtures --
Compressible Fluid Mixtures --
Dilute Solutions --
Crossover Critical Behaviour --
Crossover from Ising-like to Mean-Field Critical Behaviour.
Effective Critical Exponents --
Global Crossover Behaviour of Fluids --
Discussion --
Acknowledgements --
Phase Behaviour of Ionic Liquid Systems /
Phase Behaviour of Binary Ionic Liquid Systems --
Phase Behaviour of (Ionic Liquid + Gas Mixtures) --
Phase Behaviour of (Ionic Liquid + Water) --
Phase Behaviour of (Ionic Liquid + Organic) --
Phase Behaviour of Ternary Ionic Liquid Systems --
Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) --
Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) --
Phase Behaviour of (Ionic Liquid + Water + Alcohol) --
Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures --
Modeling of the Phase Behaviour of Ionic Liquid Systems --
Molecular Simulations --
Excess Gibbs-energy Methods --
Equation of State Modeling --
Quantum Chemical Methods --
Multi-parameter Equations of State for Pure Fluids and Mixtures /
The Development of a Thermodynamic Property Formulation --
Fitting an Equation of State to Experimental Data --
Recent Nonlinear Fitting Methods --
Pressure-Explicit Equations of State --
Cubic Equations --
The Benedict-Webb-Rubin Equation of State --
The Bender Equation of State --
The Jacobsen-Stewart Equation of State --
Thermodynamic Properties from Pressure-Explicit Equations of State --
Fundamental Equations --
The Equation of Keenan, Keyes, Hill, and Moore --
The Equations of Haar, Gallagher, and Kell --
The Equation of Schmidt and Wagner --
Reference Equations of Wagner --
Technical Equations of Span and of Lemmon --
Recent Equations of State.
Applied Non-Equilibrium Thermodynamics /
A Systematic Thermodynamic Theory for Transport --
On the Validity of the Assumption of Local Equilibrium --
Concluding remarks --
Fluxes and Forces from the Second Law of Thermodynamics --
Continuous phases --
Maxwell-Stefan Equations --
Discontinuous Systems --
Chemical Reactions --
Thermal Diffusion in a Reacting System --
Mesoscopic Description Along the Reaction Coordinate --
Heterogeneous Catalysis --
The Path of Energy-Efficient Operation --
An Optimisation Procedure --
Optimal Heat Exchange --
The Highway Hypothesis for a Chemical Reactor --
Energy-Efficient Production of Hydrogen Gas --
References.
title_new Applied thermodynamics of fluids
title_sort applied thermodynamics of fluids
publisher RSC Pub.,
publishDate 2010
physical xxiii, 509 p. : ill.
contents Note continued--
Introduction /
References --
Fundamental Considerations /
Introduction --
Basic Thermodynamics --
Homogeneous Functions --
Thermodynamic Properties from Differentiation of Fundamental Equations --
Deviation Functions --
Residual Functions --
Evaluation of Residual Functions --
Mixing and Departure Functions --
Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables --
Departure Functions with Temperature, Pressure and Composition as the Independent Variables --
Mixing and Excess Functions --
Partial Molar Properties --
Fugacity and Fugacity Coefficients --
Activity Coefficients --
The Phase Rule --
Equilibrium Conditions --
Phase Equilibria --
Chemical Equilibria --
Stability and the Critical State --
Densities and Fields --
Stability.
Critical State --
The Virial Equation of State /
Temperature Dependence of the Virial Coefficients --
Composition Dependence of the Virial Coefficients --
Convergence of the Virial Series --
The Pressure Series --
Theoretical Background --
Virial Coefficients of Hard-Core-Square-Well Molecules --
Thermodynamic Properties of Gases --
Perfect-gas and Residual Properties --
Helmholtz Energy and Gibbs Energy --
Perfect-Gas Properties --
Residual Properties --
Estimation of Second and Third Virial Coefficients --
Application of Intermolecular Potential-energy Functions --
Corresponding-states Methods --
Cubic and Generalized van der Waals Equations of State /
Cubic Equation of State Formulation --
The van der Waals Equation of State (1873) --
The Redlich and Kwong Equation of State (1949).
The Soave, Redlich and Kwong Equation of State (1972) --
The Peng and Robinson Equation of State (1976) --
The Patel and Teja (PT) Equation of State (1982) --
The α Parameter --
Volume Translation --
The Elliott, Suresh and Donohue (ESD) Equation of State (1990) --
Higher-Order Equations of State Rooted to the Cubic Equations of State --
Extension of Cubic Equations of State to Mixtures --
Applications --
Pure Components --
Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions --
Chemical Industry -- Polar and Hydrogen Bonding Fluids --
Polymers --
Transport Properties --
Conclusions --
Mixing and Combining Rules /
The Virial Equation of State --
Cubic Equations of State --
Mixing Rules --
Combining Rules --
Non-Quadratic Mixing and Combining Rules --
Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.
Multi-Parameter Equations of State --
Benedict, Webb, and Rubin Equation of State --
Generalization with the Acentric Factor --
Helmholtz-Function Equations of State --
Mixing Rules for Hard Spheres and Association --
Mixing and Combining Rules for SAFT --
Cubic Plus Association Equation of State --
The Corresponding-States Principle /
Theoretical Considerations --
Determination of Shape Factors --
Other Reference Fluids --
Exact Shape Factors --
Shape Factors from Generalized Equations of State --
Mixtures --
van der Waals One-Fluid Theory --
Mixture Corresponding-States Relations --
Applications of Corresponding-States Theory --
Extended Corresponding-States for Natural Gas Systems --
Extended Lee-Kesler --
Generalized Crossover Cubic Equation of State --
Thermodynamics of Fluids at Meso and Nano Scales /
Thermodynamic Approach to Meso-Heterogeneous Systems --
Equilibrium Fluctuations --
Local Helmholtz Energy --
Applications of Meso-Thermodynamics --
Van der Waals Theory of a Smooth Interface --
Polymer Chain in a Dilute Solution --
Building a Nanoparticle Through Self Assembly --
Modulated Fluid Phases --
Meso-Thermodynamics of Criticality --
Critical Fluctuations --
Scaling Relations --
Near-Critical Interface --
Divergence of Tolman's Length --
Competition of Meso-Scales --
Crossover to Tricriticality in Polymer Solutions --
Tolman's Length in Polymer Solutions --
Finite-size Scaling --
Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation --
Relaxation of Fluctuations --
Critical Slowing Down --
Homogeneous Nucleation --
Spinodal Decomposition --
Conclusion --
SAFT Associating Fluids and Fluid Mixtures /
Statistical Mechanical Theories of Association and Wertheim's Theory --
SAFT Equations of State --
SAFT-HS and SAFT-HR --
Soft-SAFT --
SAFT-VR --
PC-SAFT --
Summary --
Extensions of the SAFT Approach --
Modelling the Critical Region --
Polar Fluids --
Ion-Containing Fluids --
Modelling Inhomogeneous Fluids --
Dense Phases: Liquid Crystals and Solids --
Parameter Estimation: Towards more Predictive Approaches --
Pure-component Parameter Estimation --
Use of Quantum Mechanics in SAFT Equations of State --
Unlike Binary Intermolecular Parameters --
SAFT Group-Contribution Approaches --
Homonuclear Group-Contribution Models in SAFT --
Heteronuclear Group Contribution Models in SAFT --
Concluding Remarks --
Polydisperse Fluids /
Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.
Approaches to Polydispersity --
The Pseudo-component Method --
Continuous Thermodynamics --
Application to Real Systems --
Polymer Systems --
Petroleum Fluids, Asphaltenes, Waxes and Other Applications --
Thermodynamic Behaviour of Fluids near Critical Points /
General Theory of Critical Behaviour --
Scaling Fields, Critical Exponents, and Critical Amplitudes --
Parametric Equation of State --
One-Component Fluids --
Simple Scaling --
Revised Scaling --
Complete Scaling --
Vapour-Liquid Equilibrium --
Symmetric Corrections to Scaling --
Binary Fluid Mixtures --
Isomorphic Critical Behaviour of Mixtures --
Incompressible Liquid Mixtures --
Weakly Compressible Liquid Mixtures --
Compressible Fluid Mixtures --
Dilute Solutions --
Crossover Critical Behaviour --
Crossover from Ising-like to Mean-Field Critical Behaviour.
Effective Critical Exponents --
Global Crossover Behaviour of Fluids --
Discussion --
Acknowledgements --
Phase Behaviour of Ionic Liquid Systems /
Phase Behaviour of Binary Ionic Liquid Systems --
Phase Behaviour of (Ionic Liquid + Gas Mixtures) --
Phase Behaviour of (Ionic Liquid + Water) --
Phase Behaviour of (Ionic Liquid + Organic) --
Phase Behaviour of Ternary Ionic Liquid Systems --
Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) --
Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) --
Phase Behaviour of (Ionic Liquid + Water + Alcohol) --
Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures --
Modeling of the Phase Behaviour of Ionic Liquid Systems --
Molecular Simulations --
Excess Gibbs-energy Methods --
Equation of State Modeling --
Quantum Chemical Methods --
Multi-parameter Equations of State for Pure Fluids and Mixtures /
The Development of a Thermodynamic Property Formulation --
Fitting an Equation of State to Experimental Data --
Recent Nonlinear Fitting Methods --
Pressure-Explicit Equations of State --
Cubic Equations --
The Benedict-Webb-Rubin Equation of State --
The Bender Equation of State --
The Jacobsen-Stewart Equation of State --
Thermodynamic Properties from Pressure-Explicit Equations of State --
Fundamental Equations --
The Equation of Keenan, Keyes, Hill, and Moore --
The Equations of Haar, Gallagher, and Kell --
The Equation of Schmidt and Wagner --
Reference Equations of Wagner --
Technical Equations of Span and of Lemmon --
Recent Equations of State.
Applied Non-Equilibrium Thermodynamics /
A Systematic Thermodynamic Theory for Transport --
On the Validity of the Assumption of Local Equilibrium --
Concluding remarks --
Fluxes and Forces from the Second Law of Thermodynamics --
Continuous phases --
Maxwell-Stefan Equations --
Discontinuous Systems --
Chemical Reactions --
Thermal Diffusion in a Reacting System --
Mesoscopic Description Along the Reaction Coordinate --
Heterogeneous Catalysis --
The Path of Energy-Efficient Operation --
An Optimisation Procedure --
Optimal Heat Exchange --
The Highway Hypothesis for a Chemical Reactor --
Energy-Efficient Production of Hydrogen Gas --
References.
isbn 9781849730983 (electronic bk.)
callnumber-first Q - Science
callnumber-subject QC - Physics
callnumber-label QC145
callnumber-sort QC 3145.4 T5 A67 42010
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=1185176
illustrated Illustrated
oclc_num 823728351
work_keys_str_mv AT goodwinarh appliedthermodynamicsoffluids
AT sengersjv appliedthermodynamicsoffluids
AT peterscorj appliedthermodynamicsoffluids
AT royalsocietyofchemistrygreatbritain appliedthermodynamicsoffluids
AT internationalunionofpureandappliedchemistryphysicalandbiophysicalchemistrydivision appliedthermodynamicsoffluids
AT internationalassociationofchemicalthermodynamics appliedthermodynamicsoffluids
AT proquestfirm appliedthermodynamicsoffluids
status_str n
ids_txt_mv (MiAaPQ)5001185176
(Au-PeEL)EBL1185176
(CaPaEBR)ebr10627698
(CaONFJC)MIL872472
(OCoLC)823728351
is_hierarchy_title Applied thermodynamics of fluids
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
_version_ 1792330750773690368
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12430nam a2200541 a 4500</leader><controlfield tag="001">5001185176</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20200520144314.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">120411s2010 enkad sb 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2012397271</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781847558060 (hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1847558062 (hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781849730983 (electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5001185176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL1185176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CaPaEBR)ebr10627698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CaONFJC)MIL872472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)823728351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC145.4.T5</subfield><subfield code="b">A67 2010</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Applied thermodynamics of fluids</subfield><subfield code="h">[electronic resource] /</subfield><subfield code="c">edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">RSC Pub.,</subfield><subfield code="c">c2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 509 p. :</subfield><subfield code="b">ill.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Machine generated contents note:</subfield><subfield code="g">ch. 1</subfield><subfield code="t">Introduction /</subfield><subfield code="r">J. Peters --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 2</subfield><subfield code="t">Fundamental Considerations /</subfield><subfield code="r">Cor J. Peters --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Basic Thermodynamics --</subfield><subfield code="g">2.2.1.</subfield><subfield code="t">Homogeneous Functions --</subfield><subfield code="g">2.2.2.</subfield><subfield code="t">Thermodynamic Properties from Differentiation of Fundamental Equations --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Deviation Functions --</subfield><subfield code="g">2.3.1.</subfield><subfield code="t">Residual Functions --</subfield><subfield code="g">2.3.2.</subfield><subfield code="t">Evaluation of Residual Functions --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Mixing and Departure Functions --</subfield><subfield code="g">2.4.1.</subfield><subfield code="t">Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables --</subfield><subfield code="g">2.4.2.</subfield><subfield code="t">Departure Functions with Temperature, Pressure and Composition as the Independent Variables --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Mixing and Excess Functions --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Partial Molar Properties --</subfield><subfield code="g">2.7.</subfield><subfield code="t">Fugacity and Fugacity Coefficients --</subfield><subfield code="g">2.8.</subfield><subfield code="t">Activity Coefficients --</subfield><subfield code="g">2.9.</subfield><subfield code="t">The Phase Rule --</subfield><subfield code="g">2.10.</subfield><subfield code="t">Equilibrium Conditions --</subfield><subfield code="g">2.10.1.</subfield><subfield code="t">Phase Equilibria --</subfield><subfield code="g">2.10.2.</subfield><subfield code="t">Chemical Equilibria --</subfield><subfield code="g">2.11.</subfield><subfield code="t">Stability and the Critical State --</subfield><subfield code="g">2.11.1.</subfield><subfield code="t">Densities and Fields --</subfield><subfield code="g">2.11.2.</subfield><subfield code="t">Stability.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">2.11.3.</subfield><subfield code="t">Critical State --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 3</subfield><subfield code="t">The Virial Equation of State /</subfield><subfield code="r">J. P. Martin Trusler --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">3.1.1.</subfield><subfield code="t">Temperature Dependence of the Virial Coefficients --</subfield><subfield code="g">3.1.2.</subfield><subfield code="t">Composition Dependence of the Virial Coefficients --</subfield><subfield code="g">3.1.3.</subfield><subfield code="t">Convergence of the Virial Series --</subfield><subfield code="g">3.1.4.</subfield><subfield code="t">The Pressure Series --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Theoretical Background --</subfield><subfield code="g">3.2.1.</subfield><subfield code="t">Virial Coefficients of Hard-Core-Square-Well Molecules --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Thermodynamic Properties of Gases --</subfield><subfield code="g">3.3.1.</subfield><subfield code="t">Perfect-gas and Residual Properties --</subfield><subfield code="g">3.3.2.</subfield><subfield code="t">Helmholtz Energy and Gibbs Energy --</subfield><subfield code="g">3.3.3.</subfield><subfield code="t">Perfect-Gas Properties --</subfield><subfield code="g">3.3.4.</subfield><subfield code="t">Residual Properties --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Estimation of Second and Third Virial Coefficients --</subfield><subfield code="g">3.4.1.</subfield><subfield code="t">Application of Intermolecular Potential-energy Functions --</subfield><subfield code="g">3.4.2.</subfield><subfield code="t">Corresponding-states Methods --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 4</subfield><subfield code="t">Cubic and Generalized van der Waals Equations of State /</subfield><subfield code="r">Ioannis G. Economou --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Cubic Equation of State Formulation --</subfield><subfield code="g">4.2.1.</subfield><subfield code="t">The van der Waals Equation of State (1873) --</subfield><subfield code="g">4.2.2.</subfield><subfield code="t">The Redlich and Kwong Equation of State (1949).</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">4.2.3.</subfield><subfield code="t">The Soave, Redlich and Kwong Equation of State (1972) --</subfield><subfield code="g">4.2.4.</subfield><subfield code="t">The Peng and Robinson Equation of State (1976) --</subfield><subfield code="g">4.2.5.</subfield><subfield code="t">The Patel and Teja (PT) Equation of State (1982) --</subfield><subfield code="g">4.2.6.</subfield><subfield code="t">The &amp;alpha; Parameter --</subfield><subfield code="g">4.2.7.</subfield><subfield code="t">Volume Translation --</subfield><subfield code="g">4.2.8.</subfield><subfield code="t">The Elliott, Suresh and Donohue (ESD) Equation of State (1990) --</subfield><subfield code="g">4.2.9.</subfield><subfield code="t">Higher-Order Equations of State Rooted to the Cubic Equations of State --</subfield><subfield code="g">4.2.10.</subfield><subfield code="t">Extension of Cubic Equations of State to Mixtures --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Applications --</subfield><subfield code="g">4.3.1.</subfield><subfield code="t">Pure Components --</subfield><subfield code="g">4.3.2.</subfield><subfield code="t">Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions --</subfield><subfield code="g">4.3.3.</subfield><subfield code="t">Chemical Industry -- Polar and Hydrogen Bonding Fluids --</subfield><subfield code="g">4.3.4.</subfield><subfield code="t">Polymers --</subfield><subfield code="g">4.3.5.</subfield><subfield code="t">Transport Properties --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 5</subfield><subfield code="t">Mixing and Combining Rules /</subfield><subfield code="r">Stanley I. Sandler --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">5.2.</subfield><subfield code="t">The Virial Equation of State --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Cubic Equations of State --</subfield><subfield code="g">5.3.1.</subfield><subfield code="t">Mixing Rules --</subfield><subfield code="g">5.3.2.</subfield><subfield code="t">Combining Rules --</subfield><subfield code="g">5.3.3.</subfield><subfield code="t">Non-Quadratic Mixing and Combining Rules --</subfield><subfield code="g">5.3.4.</subfield><subfield code="t">Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">5.4.</subfield><subfield code="t">Multi-Parameter Equations of State --</subfield><subfield code="g">5.4.1.</subfield><subfield code="t">Benedict, Webb, and Rubin Equation of State --</subfield><subfield code="g">5.4.2.</subfield><subfield code="t">Generalization with the Acentric Factor --</subfield><subfield code="g">5.4.3.</subfield><subfield code="t">Helmholtz-Function Equations of State --</subfield><subfield code="g">5.5.</subfield><subfield code="t">Mixing Rules for Hard Spheres and Association --</subfield><subfield code="g">5.5.1.</subfield><subfield code="t">Mixing and Combining Rules for SAFT --</subfield><subfield code="g">5.5.2.</subfield><subfield code="t">Cubic Plus Association Equation of State --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 6</subfield><subfield code="t">The Corresponding-States Principle /</subfield><subfield code="r">James F. Ely --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Theoretical Considerations --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Determination of Shape Factors --</subfield><subfield code="g">6.3.1.</subfield><subfield code="t">Other Reference Fluids --</subfield><subfield code="g">6.3.2.</subfield><subfield code="t">Exact Shape Factors --</subfield><subfield code="g">6.3.3.</subfield><subfield code="t">Shape Factors from Generalized Equations of State --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Mixtures --</subfield><subfield code="g">6.4.1.</subfield><subfield code="t">van der Waals One-Fluid Theory --</subfield><subfield code="g">6.4.2.</subfield><subfield code="t">Mixture Corresponding-States Relations --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Applications of Corresponding-States Theory --</subfield><subfield code="g">6.5.1.</subfield><subfield code="t">Extended Corresponding-States for Natural Gas Systems --</subfield><subfield code="g">6.5.2.</subfield><subfield code="t">Extended Lee-Kesler --</subfield><subfield code="g">6.5.3.</subfield><subfield code="t">Generalized Crossover Cubic Equation of State --</subfield><subfield code="g">6.6.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 7</subfield><subfield code="t">Thermodynamics of Fluids at Meso and Nano Scales /</subfield><subfield code="r">Christopher E. Bertrand.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">7.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Thermodynamic Approach to Meso-Heterogeneous Systems --</subfield><subfield code="g">7.2.1.</subfield><subfield code="t">Equilibrium Fluctuations --</subfield><subfield code="g">7.2.2.</subfield><subfield code="t">Local Helmholtz Energy --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Applications of Meso-Thermodynamics --</subfield><subfield code="g">7.3.1.</subfield><subfield code="t">Van der Waals Theory of a Smooth Interface --</subfield><subfield code="g">7.3.2.</subfield><subfield code="t">Polymer Chain in a Dilute Solution --</subfield><subfield code="g">7.3.3.</subfield><subfield code="t">Building a Nanoparticle Through Self Assembly --</subfield><subfield code="g">7.3.4.</subfield><subfield code="t">Modulated Fluid Phases --</subfield><subfield code="g">7.4.</subfield><subfield code="t">Meso-Thermodynamics of Criticality --</subfield><subfield code="g">7.4.1.</subfield><subfield code="t">Critical Fluctuations --</subfield><subfield code="g">7.4.2.</subfield><subfield code="t">Scaling Relations --</subfield><subfield code="g">7.4.3.</subfield><subfield code="t">Near-Critical Interface --</subfield><subfield code="g">7.4.4.</subfield><subfield code="t">Divergence of Tolman's Length --</subfield><subfield code="g">7.5.</subfield><subfield code="t">Competition of Meso-Scales --</subfield><subfield code="g">7.5.1.</subfield><subfield code="t">Crossover to Tricriticality in Polymer Solutions --</subfield><subfield code="g">7.5.2.</subfield><subfield code="t">Tolman's Length in Polymer Solutions --</subfield><subfield code="g">7.5.3.</subfield><subfield code="t">Finite-size Scaling --</subfield><subfield code="g">7.6.</subfield><subfield code="t">Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation --</subfield><subfield code="g">7.6.1.</subfield><subfield code="t">Relaxation of Fluctuations --</subfield><subfield code="g">7.6.2.</subfield><subfield code="t">Critical Slowing Down --</subfield><subfield code="g">7.6.3.</subfield><subfield code="t">Homogeneous Nucleation --</subfield><subfield code="g">7.6.4.</subfield><subfield code="t">Spinodal Decomposition --</subfield><subfield code="g">7.7.</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 8</subfield><subfield code="t">SAFT Associating Fluids and Fluid Mixtures /</subfield><subfield code="r">Amparo Galindo.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">8.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Statistical Mechanical Theories of Association and Wertheim's Theory --</subfield><subfield code="g">8.3.</subfield><subfield code="t">SAFT Equations of State --</subfield><subfield code="g">8.3.1.</subfield><subfield code="t">SAFT-HS and SAFT-HR --</subfield><subfield code="g">8.3.2.</subfield><subfield code="t">Soft-SAFT --</subfield><subfield code="g">8.3.3.</subfield><subfield code="t">SAFT-VR --</subfield><subfield code="g">8.3.4.</subfield><subfield code="t">PC-SAFT --</subfield><subfield code="g">8.3.5.</subfield><subfield code="t">Summary --</subfield><subfield code="g">8.4.</subfield><subfield code="t">Extensions of the SAFT Approach --</subfield><subfield code="g">8.4.1.</subfield><subfield code="t">Modelling the Critical Region --</subfield><subfield code="g">8.4.2.</subfield><subfield code="t">Polar Fluids --</subfield><subfield code="g">8.4.3.</subfield><subfield code="t">Ion-Containing Fluids --</subfield><subfield code="g">8.4.4.</subfield><subfield code="t">Modelling Inhomogeneous Fluids --</subfield><subfield code="g">8.4.5.</subfield><subfield code="t">Dense Phases: Liquid Crystals and Solids --</subfield><subfield code="g">8.5.</subfield><subfield code="t">Parameter Estimation: Towards more Predictive Approaches --</subfield><subfield code="g">8.5.1.</subfield><subfield code="t">Pure-component Parameter Estimation --</subfield><subfield code="g">8.5.2.</subfield><subfield code="t">Use of Quantum Mechanics in SAFT Equations of State --</subfield><subfield code="g">8.5.3.</subfield><subfield code="t">Unlike Binary Intermolecular Parameters --</subfield><subfield code="g">8.6.</subfield><subfield code="t">SAFT Group-Contribution Approaches --</subfield><subfield code="g">8.6.1.</subfield><subfield code="t">Homonuclear Group-Contribution Models in SAFT --</subfield><subfield code="g">8.6.2.</subfield><subfield code="t">Heteronuclear Group Contribution Models in SAFT --</subfield><subfield code="g">8.7.</subfield><subfield code="t">Concluding Remarks --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 9</subfield><subfield code="t">Polydisperse Fluids /</subfield><subfield code="r">Dieter Browarzik --</subfield><subfield code="g">9.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">9.2.</subfield><subfield code="t">Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">9.3.</subfield><subfield code="t">Approaches to Polydispersity --</subfield><subfield code="g">9.3.1.</subfield><subfield code="t">The Pseudo-component Method --</subfield><subfield code="g">9.3.2.</subfield><subfield code="t">Continuous Thermodynamics --</subfield><subfield code="g">9.4.</subfield><subfield code="t">Application to Real Systems --</subfield><subfield code="g">9.4.1.</subfield><subfield code="t">Polymer Systems --</subfield><subfield code="g">9.4.2.</subfield><subfield code="t">Petroleum Fluids, Asphaltenes, Waxes and Other Applications --</subfield><subfield code="g">9.5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 10</subfield><subfield code="t">Thermodynamic Behaviour of Fluids near Critical Points /</subfield><subfield code="r">Mikhail A. Anisimov --</subfield><subfield code="g">10.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">10.2.</subfield><subfield code="t">General Theory of Critical Behaviour --</subfield><subfield code="g">10.2.1.</subfield><subfield code="t">Scaling Fields, Critical Exponents, and Critical Amplitudes --</subfield><subfield code="g">10.2.2.</subfield><subfield code="t">Parametric Equation of State --</subfield><subfield code="g">10.3.</subfield><subfield code="t">One-Component Fluids --</subfield><subfield code="g">10.3.1.</subfield><subfield code="t">Simple Scaling --</subfield><subfield code="g">10.3.2.</subfield><subfield code="t">Revised Scaling --</subfield><subfield code="g">10.3.3.</subfield><subfield code="t">Complete Scaling --</subfield><subfield code="g">10.3.4.</subfield><subfield code="t">Vapour-Liquid Equilibrium --</subfield><subfield code="g">10.3.5.</subfield><subfield code="t">Symmetric Corrections to Scaling --</subfield><subfield code="g">10.4.</subfield><subfield code="t">Binary Fluid Mixtures --</subfield><subfield code="g">10.4.1.</subfield><subfield code="t">Isomorphic Critical Behaviour of Mixtures --</subfield><subfield code="g">10.4.2.</subfield><subfield code="t">Incompressible Liquid Mixtures --</subfield><subfield code="g">10.4.3.</subfield><subfield code="t">Weakly Compressible Liquid Mixtures --</subfield><subfield code="g">10.4.4.</subfield><subfield code="t">Compressible Fluid Mixtures --</subfield><subfield code="g">10.4.5.</subfield><subfield code="t">Dilute Solutions --</subfield><subfield code="g">10.5.</subfield><subfield code="t">Crossover Critical Behaviour --</subfield><subfield code="g">10.5.1.</subfield><subfield code="t">Crossover from Ising-like to Mean-Field Critical Behaviour.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">10.5.2.</subfield><subfield code="t">Effective Critical Exponents --</subfield><subfield code="g">10.5.3.</subfield><subfield code="t">Global Crossover Behaviour of Fluids --</subfield><subfield code="g">10.6.</subfield><subfield code="t">Discussion --</subfield><subfield code="t">Acknowledgements --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 11</subfield><subfield code="t">Phase Behaviour of Ionic Liquid Systems /</subfield><subfield code="r">Cor J. Peters --</subfield><subfield code="g">11.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">11.2.</subfield><subfield code="t">Phase Behaviour of Binary Ionic Liquid Systems --</subfield><subfield code="g">11.2.1.</subfield><subfield code="t">Phase Behaviour of (Ionic Liquid + Gas Mixtures) --</subfield><subfield code="g">11.2.2.</subfield><subfield code="t">Phase Behaviour of (Ionic Liquid + Water) --</subfield><subfield code="g">11.2.3.</subfield><subfield code="t">Phase Behaviour of (Ionic Liquid + Organic) --</subfield><subfield code="g">11.3.</subfield><subfield code="t">Phase Behaviour of Ternary Ionic Liquid Systems --</subfield><subfield code="g">11.3.1.</subfield><subfield code="t">Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) --</subfield><subfield code="g">11.3.2.</subfield><subfield code="t">Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) --</subfield><subfield code="g">11.3.3.</subfield><subfield code="t">Phase Behaviour of (Ionic Liquid + Water + Alcohol) --</subfield><subfield code="g">11.3.4.</subfield><subfield code="t">Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures --</subfield><subfield code="g">11.4.</subfield><subfield code="t">Modeling of the Phase Behaviour of Ionic Liquid Systems --</subfield><subfield code="g">11.4.1.</subfield><subfield code="t">Molecular Simulations --</subfield><subfield code="g">11.4.2.</subfield><subfield code="t">Excess Gibbs-energy Methods --</subfield><subfield code="g">11.4.3.</subfield><subfield code="t">Equation of State Modeling --</subfield><subfield code="g">11.4.4.</subfield><subfield code="t">Quantum Chemical Methods --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 12</subfield><subfield code="t">Multi-parameter Equations of State for Pure Fluids and Mixtures /</subfield><subfield code="r">Roland Span.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">12.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">12.2.</subfield><subfield code="t">The Development of a Thermodynamic Property Formulation --</subfield><subfield code="g">12.3.</subfield><subfield code="t">Fitting an Equation of State to Experimental Data --</subfield><subfield code="g">12.3.1.</subfield><subfield code="t">Recent Nonlinear Fitting Methods --</subfield><subfield code="g">12.4.</subfield><subfield code="t">Pressure-Explicit Equations of State --</subfield><subfield code="g">12.4.1.</subfield><subfield code="t">Cubic Equations --</subfield><subfield code="g">12.4.2.</subfield><subfield code="t">The Benedict-Webb-Rubin Equation of State --</subfield><subfield code="g">12.4.3.</subfield><subfield code="t">The Bender Equation of State --</subfield><subfield code="g">12.4.4.</subfield><subfield code="t">The Jacobsen-Stewart Equation of State --</subfield><subfield code="g">12.4.5.</subfield><subfield code="t">Thermodynamic Properties from Pressure-Explicit Equations of State --</subfield><subfield code="g">12.5.</subfield><subfield code="t">Fundamental Equations --</subfield><subfield code="g">12.5.1.</subfield><subfield code="t">The Equation of Keenan, Keyes, Hill, and Moore --</subfield><subfield code="g">12.5.2.</subfield><subfield code="t">The Equations of Haar, Gallagher, and Kell --</subfield><subfield code="g">12.5.3.</subfield><subfield code="t">The Equation of Schmidt and Wagner --</subfield><subfield code="g">12.5.4.</subfield><subfield code="t">Reference Equations of Wagner --</subfield><subfield code="g">12.5.5.</subfield><subfield code="t">Technical Equations of Span and of Lemmon --</subfield><subfield code="g">12.5.6.</subfield><subfield code="t">Recent Equations of State.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Note continued--</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">13.6.</subfield><subfield code="t">Concluding Remarks --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 14</subfield><subfield code="t">Applied Non-Equilibrium Thermodynamics /</subfield><subfield code="r">Dick Bedeaux --</subfield><subfield code="g">14.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">14.1.1.</subfield><subfield code="t">A Systematic Thermodynamic Theory for Transport --</subfield><subfield code="g">14.1.2.</subfield><subfield code="t">On the Validity of the Assumption of Local Equilibrium --</subfield><subfield code="g">14.1.3.</subfield><subfield code="t">Concluding remarks --</subfield><subfield code="g">14.2.</subfield><subfield code="t">Fluxes and Forces from the Second Law of Thermodynamics --</subfield><subfield code="g">14.2.1.</subfield><subfield code="t">Continuous phases --</subfield><subfield code="g">14.2.2.</subfield><subfield code="t">Maxwell-Stefan Equations --</subfield><subfield code="g">14.2.3.</subfield><subfield code="t">Discontinuous Systems --</subfield><subfield code="g">14.2.4.</subfield><subfield code="t">Concluding Remarks --</subfield><subfield code="g">14.3.</subfield><subfield code="t">Chemical Reactions --</subfield><subfield code="g">14.3.1.</subfield><subfield code="t">Thermal Diffusion in a Reacting System --</subfield><subfield code="g">14.3.2.</subfield><subfield code="t">Mesoscopic Description Along the Reaction Coordinate --</subfield><subfield code="g">14.3.3.</subfield><subfield code="t">Heterogeneous Catalysis --</subfield><subfield code="g">14.3.4.</subfield><subfield code="t">Concluding Remarks --</subfield><subfield code="g">14.4.</subfield><subfield code="t">The Path of Energy-Efficient Operation --</subfield><subfield code="g">14.4.1.</subfield><subfield code="t">An Optimisation Procedure --</subfield><subfield code="g">14.4.2.</subfield><subfield code="t">Optimal Heat Exchange --</subfield><subfield code="g">14.4.3.</subfield><subfield code="t">The Highway Hypothesis for a Chemical Reactor --</subfield><subfield code="g">14.4.4.</subfield><subfield code="t">Energy-Efficient Production of Hydrogen Gas --</subfield><subfield code="g">14.4.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References.</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fluids</subfield><subfield code="x">Thermal properties.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodwin, A. R. H.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sengers, J. V.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peters, Cor J.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Royal Society of Chemistry (Great Britain)</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">International Union of Pure and Applied Chemistry.</subfield><subfield code="b">Physical and Biophysical Chemistry Division.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">International Association of Chemical Thermodynamics.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=1185176</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>