Automated Vehicles As a Game Changer for Sustainable Mobility : : Learnings and Solutions.

Saved in:
Bibliographic Details
Superior document:Contributions to Management Science Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer,, 2024.
©2024.
Year of Publication:2024
Edition:1st ed.
Language:English
Series:Contributions to Management Science Series
Physical Description:1 online resource (522 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword
  • Foreword
  • Foreword
  • The Five Ts: Transparency, Trust, Teamwork, Try, and Transform
  • We Need a Climate for Change
  • Horizon 2020 Project AVENUE
  • Europe Fit for the Digital Decade
  • The Five Ts: Transparency, Trust, Teamwork, Try, and Transform
  • Acknowledgements
  • About This Book
  • Contents
  • Contributors
  • Acronyms
  • Chapter 1: Introduction
  • 1.1 Automated Vehicles (AVs) for a New Mobility
  • 1.2 Contents of the Individual Book Parts
  • 1.2.1 Part 1: The AVENUE Project: Implementing Automated Minibuses for "Door-to-Door" and "On-Demand" Passenger Transportation in Geneva, Lyon, Luxembourg and Copenhagen
  • 1.2.2 Part 2: Impact Assessment of AVENUE
  • 1.2.3 Future Vision of AVENUE
  • References
  • Part I: The AVENUE Project: Implementing Automated Minibuses for "Door-to-Door" and "On-Demand" Passenger Transportation in Geneva, Lyon, Luxembourg and Copenhagen
  • Chapter 2: AVENUE Site Demonstrators: Geneva, Lyon, Luxembourg, and Copenhagen
  • 2.1 Introduction
  • 2.2 The Changing Landscape of Mobility
  • 2.2.1 Fighting Congestion
  • 2.2.2 The Transformation of Public Transportation
  • 2.2.3 Readiness to Adopt New Transportation Means
  • 2.2.4 Challenges for Public Transport Operators (PTOs)
  • 2.3 The Geneva Sites
  • 2.3.1 Objectives
  • 2.3.2 Deployment
  • 2.3.3 Achievements and Key Success Factors
  • 2.3.4 Recommendations
  • 2.3.5 Future Developments
  • 2.4 Denmark and Norway
  • 2.4.1 Nordhavn
  • 2.4.1.1 Objectives
  • 2.4.1.2 Deployment
  • 2.4.1.3 Achievements and Key Success Factors
  • Passengers and Distance Driven
  • Driving Speed and Automated vs. Manual Mode
  • Issues Reported on Route
  • Downtime and Cancelled Operation
  • 2.4.1.4 Recommendations
  • Object-Detection Challenges
  • Increased Mixed Traffic in High Seasons
  • Consequences of Construction Work.
  • Lack of Parking Spots Compared to the Number of Cars
  • Low-Speed Limit
  • 2.4.1.5 Future Developments
  • Complications in Nordhavn
  • 2.4.2 Ormøya
  • 2.4.2.1 Objectives
  • 2.4.2.2 Deployment
  • 2.4.2.3 Achievements and Key Success Factors
  • Passengers and Distance
  • Automated vs. Manual Driving
  • Issues Encountered on the Route
  • 2.4.2.4 Recommendations
  • Public Transport in Oslo
  • User Experience
  • Vegetation and Snow
  • Major Safety Issues
  • 2.4.3 Slagelse
  • 2.4.3.1 Objectives
  • 2.4.3.2 Deployment
  • Red Section
  • Green Section
  • Blue Section
  • Parking Conditions
  • 2.4.3.3 Achievements and Key Success Factors
  • Distance and Passengers
  • Automated Vs. Manual Driving
  • 2.4.3.4 Recommendations
  • User Experience Learnings
  • Patients
  • Relatives/Visitors
  • Employees
  • Performance Learnings
  • Low-Speed Environment
  • Low Complexity Environment
  • 2.4.4 Conclusions
  • 2.5 Lyon, France
  • 2.5.1 Objectives
  • 2.5.2 Deployment
  • 2.5.3 Achievements and Key Success Factors
  • 2.5.4 Future Development
  • 2.5.4.1 The Constraints of Availability for Users
  • 2.5.4.2 Energy Constraints and Battery Capacity
  • 2.5.4.3 Facilitate the Relationship with the User
  • 2.5.4.4 Pricing Issue
  • 2.6 Luxembourg
  • 2.6.1 Pfaffenthal
  • 2.6.1.1 Objectives
  • 2.6.1.2 Deployment
  • 2.6.1.3 Achievements and Key Success Factors
  • 2.6.1.4 Future Development
  • 2.6.2 Contern
  • 2.6.2.1 Objectives
  • 2.6.2.2 Deployment
  • 2.6.2.3 Achievements and Key Success Factors
  • 2.6.2.4 Future Development
  • 2.6.3 Esch-Sur-Alzette
  • 2.6.3.1 Objectives
  • 2.6.3.2 Deployment
  • 2.6.3.3 Achievements and Key Success Factors
  • 2.6.3.4 Future Development
  • 2.7 Lessons Learned
  • References
  • Chapter 3: Automated Minibuses: State of the Art and Improvements Through AVENUE
  • 3.1 Introduction
  • 3.2 Automated Driving Context before Starting AVENUE.
  • 3.2.1 Market Projection
  • 3.2.2 Automated Driving
  • 3.2.3 The Landscape of Automated Mobility
  • 3.2.4 NAVYA before 2018
  • 3.2.4.1 Hardware
  • 3.2.4.2 Software
  • 3.2.4.3 Services
  • 3.2.5 NAVYA Ecosystem
  • 3.2.6 Legal Boundaries
  • 3.3 Technology Improvements Through AVENUE
  • 3.3.1 A Global View
  • 3.3.2 NAVYA Software
  • 3.3.3 Automotive New Release Process
  • 3.3.4 NavyaDrive® Evolutions
  • 3.3.4.1 The Operating System
  • 3.3.4.2 Over-the-Air Update
  • 3.3.4.3 On-Demand Service
  • 3.3.4.4 V2X Traffic Light Management
  • 3.3.4.5 V2X Solution for Complex Situations
  • 3.3.4.6 Driving Enhancement
  • 3.3.5 Supervision Improvements and NavyaOperate©
  • 3.3.6 Navya API
  • 3.3.7 HMI and Experience Enhancement
  • 3.3.7.1 Operator User Interface
  • 3.3.7.2 Event Triggering System
  • 3.3.7.3 In-Vehicle Audio Announcements (UI)
  • 3.3.7.4 Interactive Interface for Passengers (UI)
  • 3.3.7.5 External Sound (UI)
  • 3.3.7.6 External Screen and Human-Machine Interface (HMI)
  • 3.3.8 Other Enhancements
  • 3.3.8.1 Hardware Enhancement
  • 3.3.8.2 Mapping, Commissioning, and Tools
  • 3.3.8.3 Additional Tool Enhancements
  • 3.4 Beyond Avenue
  • 3.5 Conclusion
  • References
  • Chapter 4: Safety, Security and Service Quality for Automated Minibuses: State of the Art, Technical Requirements and Data Privacy in Case of Incident
  • 4.1 Introduction
  • 4.2 A Shared Sustainability and Durability Target for the Society and for Companies
  • 4.3 The Conditions to Make it a Sustainable and Durable Solution
  • 4.3.1 Traffic Management and Energy Consumption
  • 4.3.2 "Customer" Durable Satisfaction, Including Safety
  • 4.3.3 Safety Measurable Targets and Steps
  • 4.4 The Critical Path for Market Introduction of Safe Automated Minibuses
  • 4.5 Quality and Safety State of the Art for Automated Minibuses
  • 4.6 A Self-Learning Automated Transport System at European Level.
  • 4.7 Data Privacy of Incident Analysis and Lesson Learned Sharing
  • 4.8 Automated Minibus Safety and Service Quality Levers
  • 4.9 Conclusion
  • References
  • Chapter 5: In-Vehicle Services to Improve the User Experience and Security when Traveling with Automated Minibuses
  • 5.1 Introduction
  • 5.2 Service: Enhance the Sense of Security and Trust
  • 5.3 Service: Automated Passenger Presence
  • 5.4 Service: Follow My Kid/Grandparents
  • 5.5 Service: Shuttle Environment Assessment
  • 5.6 Service: Smart Feedback System
  • 5.7 Conclusion
  • References
  • Chapter 6: Cybersecurity and Data Privacy: Stakeholders' Stand on Regulations and Standards
  • 6.1 Introduction
  • 6.1.1 CAVs' Threats
  • 6.1.1.1 In-Vehicle Equipment
  • 6.1.1.2 External Communication Technologies
  • 6.1.2 Motivation
  • 6.2 Regulations and Standards
  • 6.2.1 CAVs Privacy Initiatives
  • 6.3 Methodology
  • 6.4 Findings
  • 6.5 Discussion and Recommendations
  • 6.5.1 Standards Coverage Map
  • 6.5.2 Further Recommendations
  • 6.5.3 Assessment Limitations
  • 6.6 Conclusion
  • References
  • Chapter 7: Technical Cybersecurity Implementation on Automated Minibuses with Security Information and Event Management (SIEM)
  • 7.1 Introduction
  • 7.2 Basics of a SIEM Software Solution
  • 7.3 Most Popular SIEM Open-Source Software
  • 7.4 SIEM Benefits for CAV Infrastructure
  • 7.5 Limitations of SIEM
  • 7.6 Characteristics of the SIEM Platform
  • 7.7 Investigation on Diverse Implementations within AVENUE
  • 7.8 Conclusion
  • References
  • Chapter 8: Persons with Reduced Mobility (PRM) Specific Requirements for Passenger Transportation Services
  • 8.1 Introduction
  • 8.2 Requirements of Passengers (Interview Results)
  • 8.2.1 Phase 1 (July-September 2018)
  • 8.2.2 Public Transport in General
  • 8.2.3 Attitude Towards Fully Automated Public Transport (Unexperienced Pax).
  • 8.2.4 Phase 2 (June 2019-February 2020)
  • 8.2.5 Interviews with Safety Operators
  • 8.2.6 Interviews with Experienced Passengers: Attitude Towards Fully Automated Public Transport
  • 8.3 A Blind Users' Perspective on Automated Vehicles
  • 8.3.1 Bus Stops on the Course
  • 8.3.2 Boarding Process
  • 8.3.3 Interior Situation and Bus Ride
  • 8.3.4 Getting Out of the Bus
  • 8.3.5 Klaus-Dieter's Summary
  • 8.4 Situation-Based Impairments of Different Passenger Groups
  • 8.5 Proposed Implementation of User Requirements
  • 8.5.1 Mock-Up for an Accessible App for Fully Automated Public Transport
  • 8.5.2 Information Display in the Vehicle
  • 8.6 Conclusions
  • Appendix: Mobile Apps for Blind and Low-Vision Public Transport Travellers
  • List of Mobile Applications
  • GoodMaps Outdoors
  • BlindSquare
  • myfinder
  • Seeing AI
  • References
  • Chapter 9: Stakeholder Analysis and AVENUE Strategies
  • 9.1 Introduction
  • 9.1.1 Research Aim
  • 9.1.2 Research Approach
  • 9.2 Empirical Stakeholder Analysis
  • 9.2.1 Results of the Initial Stakeholder Scan
  • 9.2.1.1 Power-Interest and Impact-Attribute Grid
  • 9.2.1.2 Onion Diagram
  • 9.2.1.3 Selection of Stakeholder Groups
  • 9.2.2 Self-Assessment Stakeholder Groups
  • 9.2.2.1 Public Transport Operators
  • 9.2.2.2 Manufacturers
  • 9.2.2.3 Software Providers
  • 9.2.2.4 Driver Unions
  • 9.2.2.5 Policymakers
  • 9.2.2.6 Civil Society Organizations/Citizen Organizations
  • 9.2.3 Results from the Cross-Sectional Analysis
  • 9.2.3.1 The Crucial Role of City Government
  • 9.2.3.2 Technology Development and Legal Regulations
  • 9.2.3.3 Restructuring the Mobility Industry
  • 9.2.3.4 Social Acceptance and Environmental Aspects
  • 9.2.3.5 Future Scenarios
  • 9.2.4 Stakeholder Map
  • 9.2.4.1 Structure of the Stakeholder Map
  • 9.2.4.2 Insights from the Stakeholder Map.
  • 9.3 Conceptual AVENUE Stakeholder and Mobility Services Analysis.