Development of a System for Fast Identification and Characterization of Biological Cells.

Saved in:
Bibliographic Details
:
Place / Publishing House:Berlin : : Logos Verlag Berlin,, 2024.
©2024.
Year of Publication:2024
Edition:First edition.
Language:English
Series:Wissenschaftliche Beiträge Zur Medizinelektronik Series ; v.11.
Physical Description:1 online resource (220 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Abstract
  • Acknowledgements
  • Contents
  • List of Figures
  • List of Tables
  • Glossary
  • List of Symbols
  • 1 Introduction
  • 1.1 Purpose of the Work
  • 1.2 Thesis Outline
  • 1.3 Contributions
  • 1.4 List of Publications
  • 2 Theoretical Background
  • 2.1 Biological Cells
  • 2.1.1 The Eukaryotic Cell
  • 2.1.2 Cellular Membrane
  • 2.2 Electrical Properties of Biological Systems
  • 2.3 Electrical Impedance Spectroscopy
  • 2.3.1 Mathematical Concept of Impedance
  • 2.3.2 Graphical Representation of Impedance Data
  • 2.3.3 Electrical and Electrochemical Circuit Elements
  • 2.3.4 Conditions for Valid EIS Data
  • 3 Development of a Four Electrode Terminal Chamber System
  • 3.1 Electrode Polarization in Low Frequencies
  • 3.1.1 Interfacial Capacitance
  • 3.1.2 Charge Transfer Resistance
  • 3.1.3 Warburg Impedance for Diffusion Modelling
  • 3.1.4 Solution Resistance
  • 3.1.5 Equivalent Circuit of Electrode-Electrolyte Interface
  • 3.2 Measurement Systems and Electrodes Setup
  • 3.2.1 Two-Electrode Measurement System
  • 3.2.2 Three-Terminal Measurement System
  • 3.2.3 Four-Terminal Measurement System
  • 3.3 Detailed ECM of the Experimental Setup
  • 3.4 Designed System
  • 3.5 Comparison 4T vs. 2T Measurements
  • 3.6 Source of Artifacts in Low Frequency Impedance Experiments
  • 4 Applying EIS to Cancer Cells Suspensions
  • 4.1 Introduction
  • 4.1.1 Normal Cell Lines
  • 4.1.2 Prostate Cancer Cell Lines
  • 4.1.3 Leukemia Cell Lines
  • 4.1.4 Colon Cancer Cell Lines
  • 4.1.5 Breast Cancer Cell Lines
  • 4.2 Experimental Procedure
  • 4.3 Experimental Results
  • 4.3.1 Impedance Magnitude and Phase Curves Using the 320 μL Chamber
  • 4.3.2 Metastatic versus Non-Metastatic Cancers
  • 4.3.3 Comparison of the Impedance Spectrum from Different Cell Lines
  • 4.3.4 Cell Sizes
  • 4.4 Suggestions for Future Experiments
  • 4.4.1 Use a Temperature Controlled Box.
  • 4.4.2 Measure Cells Shortly After Detachment
  • 4.4.3 Perform Only Few Experiments per Day
  • 4.4.4 Use Preferably New Electrodes
  • 4.4.5 Use Small Voltage Signals
  • 4.4.6 Do not apply a DC potential to impedance experiments
  • 4.5 Conclusions
  • 5 Measuring the Cell Surface Charge
  • 5.1 Introduction
  • 5.2 Low Frequency Dispersion of Colloidal Particles Suspended in Electrolyte Solutions
  • 5.3 Dimensional Analysis of Equation 5.7
  • 5.4 Correction of Schwarz Model to 4T Experiments
  • 5.5 Experimental Results: Calculation of the Cell Surface Charge
  • 5.6 Comments on Schwarz Theory
  • 5.7 Conclusions
  • 6 Measuring Adherent Cells
  • 6.1 Introduction
  • 6.2 Theoretical Background
  • 6.2.1 Working Principle
  • 6.2.2 Presence of the Double Layer
  • 6.2.3 Equivalent Circuit Model to Analyse the Cells Attached to Interdigitated Electrodes
  • 6.3 Experimental Procedure
  • 6.4 Experimental Results
  • 6.4.1 Cell Attachment and Growth
  • 6.4.2 Evaluating Chemotheraphy Effects
  • 6.5 Conclusions
  • 7 Spectral Response of Healthy Tissues and Solid Tumors
  • 7.1 Theoretical Background
  • 7.2 Spectral Response of Healthy Tissues
  • 7.3 Tumor Composition and Organization
  • 7.4 Main Structural Differences Between Tumor and Healthy Tissues
  • 7.5 Comparison Tumor vs. Healthy Tissues Spectral Response
  • 7.5.1 Experimental Setup
  • 7.5.2 Experimental Results
  • 7.6 Conclusions
  • 8 Conclusions and Future Work
  • 8.1 Summary and Conclusions
  • 8.2 Recommendations and Guidelines
  • 8.3 Future Work
  • A Architecture proposal of a 4T impedance measurement system
  • A.1 Macro view of the impedance measurement system
  • A.1.1 Oscillator
  • A.1.2 Potentiostat
  • A.1.3 Principles of lock-in detection
  • A.1.4 Front-end and complete system
  • A.2 Conclusions
  • B Cancer metabolites identification
  • B.1 First method: membrane system to separate different types of ions.
  • B.1.1 Step A: identify body fluids
  • B.1.2 Step B: choose one body fluid
  • B.1.3 Step C: identify metabolite chemical formula
  • B.1.4 Step E: calculate the molecular size of the metabolite
  • B.1.5 Design membrane system to separate metabolite
  • B.1.6 Conductivity measurement of different compartments
  • B.1.7 Calculate metabolite concentration
  • B.1.8 Comments about the method
  • B.2 Second method: surface modified interdigitated electrodes
  • C Extracting Δεα from impedance measurements
  • C.1 Equivalent circuit model
  • C.2 Fitting the experimental data
  • C.3 Extracting Δεα
  • C.4 Example of fitting PC-3 cells experiments to extract Δε0
  • Complete Table Cell Surface Charge
  • Bibliography.