Engineered nanomaterials and phytonanotechnology : : challenges for plant sustainability / / edited by Sandeep Kumar Verma, Ashok Kumar Das.

Saved in:
Bibliographic Details
Superior document:Comprehensive analytical chemistry ; Volume 87
TeilnehmendeR:
Place / Publishing House:Amsterdam, Netherlands ;, Oxford, England ;, Cambridge, Massachusetts : : Elsevier,, [2019]
©2019
Year of Publication:2019
Language:English
Series:Comprehensive analytical chemistry ; Volume 87.
Physical Description:1 online resource (344 pages).
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993603656804498
ctrlnum (CKB)4100000009842610
(MiAaPQ)EBC5982937
(EXLCZ)994100000009842610
collection bib_alma
record_format marc
spelling Engineered nanomaterials and phytonanotechnology : challenges for plant sustainability / edited by Sandeep Kumar Verma, Ashok Kumar Das.
Amsterdam, Netherlands ; Oxford, England ; Cambridge, Massachusetts : Elsevier, [2019]
©2019
1 online resource (344 pages).
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Comprehensive analytical chemistry ; Volume 87
Description based on print version record.
Front Cover -- Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability -- Copyright -- Contents -- Contributors to volume 87 -- About the editors -- Preface -- Chapter One: Environmental application of nanomaterials: A promise to sustainable future -- 1. Introduction to nano-technology: Historical background and current trends in application -- 1.1. History of nanotechnology -- 1.2. Current trends in nanotechnology -- 2. Types of engineered nanomaterial -- 3. Environmental application of ENM -- 3.1. Medical application of nanoparticles -- 3.1.1. Disease treatment -- 3.1.2. Bio-analysis -- 3.1.3. Drug delivery -- 3.2. Application of nanoparticles in electronics and information technology -- 3.2.1. Nanotechnology to harvest renewable energy -- 3.2.2. Solar energy -- 3.2.3. Wind energy -- 3.3. Usage in personal care products -- 3.3.1. Composition and formulation of NP-cosmeceuticals -- 3.3.1.1. Nanocarriers in cosmetics -- 3.3.1.1.1. Metal oxide nanomaterials -- 3.3.1.1.2. Organic nanocarriers -- 3.4. Role of nanotechnology in agriculture -- 3.4.1. The development of nano bio-sensors for precision in agriculture -- 3.4.2. Direct usage of NP´s -- 3.4.3. Smart delivery system of NP´s in plant -- 3.4.3.1. Fertilizer industry -- 3.4.3.2. Pesticide industry -- 3.5. Application of nanotechnology in water purification -- 3.5.1. Process involved in water purification in relation to NPs -- 3.5.2. Composition/working-based classification of nanoparticles for water treatment -- 3.5.2.1. Magnetic nanoparticles -- 3.5.2.2. Carbon-based nanotubes and nano enhanced membranes -- 3.5.2.3. Nanocellulose-based membranes for water purification -- 3.5.2.4. Metal and metal oxide NPs in water treatment and purification -- 3.5.3. Effectiveness and limitations -- 3.6. Application of nanomaterials in food safety: From field to dining plate.
3.6.1. Nanotechnology for advance food packaging -- 3.6.2. Barriers to nanotechnology in food industry -- 4. Critical version of nanotechnology with reference to eco-toxicology -- 4.1. Inspect present to build our future -- 5. Future prospects of nanotechnology -- References -- Further reading -- Chapter Two: Plant-nanoparticle interactions: Mechanisms, effects, and approaches -- 1. Introduction -- 2. Nanoparticle uptake dynamics and mechanism -- 3. Biological effect and impact -- 4. Next generation approaches for toxicity studies: Perspective on omics-based tools -- 5. Applications of nanoparticles in plants for beneficial purposes -- 6. Conclusion and future prospects -- References -- Chapter Three: A general overview on application of nanoparticles in agriculture and plant science -- 1. Nanobiotechnology -- 2. Production of enzymes with nano-specific properties -- 3. Biological nano-sensors -- 4. Application of nanoparticles in environmental monitoring and diagnosis of pathogens -- 5. Application of nanotechnology in food industry -- 6. Application of nanotechnology in animal science -- 7. Role of nanotechnology in irrigation -- 8. Application of nanotechnology in agricultural machinery -- 9. Nanotechnology in agriculture and horticulture -- 10. The effect of nanoparticles on photosynthesis -- 11. Effect of nanotechnology on the food chain -- 12. Bioactive nano-sensors are used to prepare biological materials that can react quickly with target molecules -- 13. Nano-fertilizers and nano-insecticides -- 14. Converting agricultural wastes to nanoparticles -- 15. Conclusions -- References -- Chapter Four: Engineered nanomaterials uptake, bioaccumulation and toxicity mechanisms in plants -- 1. Introduction -- 2. Nanomaterials uptake by plants -- 3. Effects of ENMs exposure on plants physiological characteristics -- 4. Biochemical basis of ENMs toxicity.
5. Plant responses towards nanoparticle toxicity -- 6. Conclusion -- Acknowledgements -- References -- Chapter Five: Engineered nanomaterials in plants: Sensors, carriers, and bio-imaging -- 1. Introduction -- 1.1. Nanoparticles to engineered nanomaterials -- 1.2. Types of engineered nanomaterials -- 2. Applications of engineered nanomaterials in plants -- 2.1. ENMs as bio-carriers -- 2.2. ENMs as biosensors -- 2.2.1. Nano-mechanical biosensors -- 2.2.2. Biochips -- 2.2.3. PEBBLE nanosensors -- 2.2.4. Nano-biosensors for detection of plant metabolites -- 2.2.5. Nano-biosensors for detection antibacterial agents -- 2.2.6. Nano-biosensors for detection of plant pathogens -- 2.2.7. Detection of heavy metal contamination -- 2.3. ENMs as bio-imaging agents -- 3. Designing ENMs for plants -- 3.1. ENM uptake and translocation in plant cells -- 3.2. Functionalization of the ENMs -- 4. Phytotoxicity and engineered nanomaterials -- 5. Conclusion and future prospects -- References -- Chapter Six: Antioxidant role of nanoparticles for enhancing ecological performance of plant system -- 1. Introduction -- 2. Nanoparticles utility in plant science -- 3. Nanoparticles and their interaction with plant system -- 4. Antioxidative defence systems in plants -- 4.1. Impact of oxidative stress on ecological performance -- 4.2. Interaction of nanoparticles with antioxidant systems -- 4.3. Nanoparticles acting as antioxidants -- 5. Summary -- References -- Further reading -- Chapter Seven: Toxicity assessment of metal oxide nanoparticles on terrestrial plants -- 1. Nanoparticles -- 2. Production, applications and environmental concern -- 3. Sink of nanoparticles -- 4. Influence of nanoparticles on plants -- 5. Toxicity mechanism and effects on plants -- 6. Available techniques to detect presence of nanoparticles -- 7. Conclusion and future prospects -- Acknowledgements.
References -- Chapter Eight: Cerium oxide nanoparticles: Advances in synthesis, prospects and application in agro-ecosystem -- 1. Introduction -- 1.1. Cerium oxide nanoparticles (CeO2 NPs) sources in environment -- 1.1.1. Natural sources of CeO2 NPs -- 1.1.2. Anthropogenic sources of CeO2 NPs -- 2. Synthesis and characterization of CeO2 NPs -- 2.1. Green synthesis of CeO2 NPs -- 2.2. Nutrient mediated synthesis of CeO2 NPs -- 2.3. Chemical synthesis of CeO2 NPs -- 2.4. Characterization of CeO2 NPs -- 2.5. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) -- 2.5.1. XRD -- 2.6. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TE ... -- 3. Environmental application of CeO2 NPs -- 3.1. Biomedical application -- 3.1.1. Nanoceria and disease control -- 3.1.2. Industrial applications -- 3.1.3. Agriculture application -- 4. Fate of cerium oxide nanoparticles in soil -- 4.1. Solubility and transport in soil -- 4.2. Adsorption and coagulation of CeO2 NPs in soil -- 5. Fate of cerium oxide nanoparticles in plants -- 5.1. Uptake by plants -- 5.2. Transport in plants -- 5.3. Assimilation and transformation in plants -- 5.4. Biochemical interactions within plant matrices -- 5.5. Combating salinity and heavy metal stresses -- 6. Critics on the eco toxicological impacts of CeO2 NPs -- 6.1. Cellular specific toxicity of CeO2 NPs in humans and animals -- 6.2. CeO2 NPs negative influence on plants -- 7. Prospects -- 8. Summary -- References -- Further reading -- Chapter Nine: ZnO nanoparticle with promising antimicrobial and antiproliferation synergistic properties -- 1. Introduction -- 2. Antibacterial synergism -- 3. Synergistic effect of ZnO NPs in cancer -- 4. Conclusion -- Acknowledgement -- References.
Chapter Ten: Biologically synthesized nanomaterials and their antimicrobial potentials -- 1. Introduction -- 2. Biological synthesis of nanoparticles and its associated advantages -- 2.1. Nanoparticles synthesis using plants -- 2.2. Nanoparticles synthesis using microorganisms -- 3. Characterization of biologically synthesized nanoparticles -- 3.1. Spectroscopic techniques -- 3.1.1. UV-Vis spectrophotometry -- 3.1.2. Infrared (IR) spectroscopy -- 3.1.3. Fourier transform infrared (FTIR) spectroscopy -- 3.2. Microscopic techniques -- 3.2.1. Scanning electron microscopy (SEM) -- 3.2.2. Energy dispersive X-ray analysis -- 3.2.3. Transmission electron microscopy (TEM) -- 3.2.4. Scanning probe microscopes/scanning tunnelling microscope (SPM/STM) -- 3.3. Diffraction techniques -- 3.3.1. X-ray diffraction (XRD) -- 3.3.2. Dynamic light scattering (DLS) -- 3.3.3. Zeta potential measurement -- 4. Antimicrobial potential of biologically synthesized nanomaterials -- 4.1. Silver nanoparticles -- 4.2. Gold nanoparticles -- 4.3. Copper nanoparticles -- 4.4. Titanium and zinc nanoparticles -- References -- Chapter Eleven: Emerging plant-based anti-cancer green nanomaterials in present scenario -- 1. Introduction -- 1.1. General introduction about cancer -- 1.2. Cancer management -- 1.3. Role of nanomaterial´s to combat cancer -- 2. Role of phytochemicals to the synthesis of nano-biomaterials -- 2.1. Silver nanoparticles (AgNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Iron oxide nanoparticles -- 2.4. Titanium oxide nanoparticles -- 2.5. Cerium oxide nanoparticles -- 2.6. Bimetallic and nano-composite nanoparticles -- 2.6.1. Nano-composites -- 3. Parameters influencing the activity of nanomaterials -- 4. Emerging potential plant-based anti-cancer nanomaterials -- 5. Anti-cancer mechanisms of action of nanomaterials.
6. Future prospects of nanomaterials for cancer nanomedicine.
Plants Effect of stress on Molecular aspects.
Verma, Sandeep Kumar, editor.
Das, A. K. (Ashok Kumar), editor.
Comprehensive analytical chemistry ; Volume 87.
language English
format eBook
author2 Verma, Sandeep Kumar,
Das, A. K.
author_facet Verma, Sandeep Kumar,
Das, A. K.
author2_variant s k v sk skv
a k d ak akd
author2_fuller (Ashok Kumar),
author2_role TeilnehmendeR
TeilnehmendeR
title Engineered nanomaterials and phytonanotechnology : challenges for plant sustainability /
spellingShingle Engineered nanomaterials and phytonanotechnology : challenges for plant sustainability /
Comprehensive analytical chemistry ;
Front Cover -- Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability -- Copyright -- Contents -- Contributors to volume 87 -- About the editors -- Preface -- Chapter One: Environmental application of nanomaterials: A promise to sustainable future -- 1. Introduction to nano-technology: Historical background and current trends in application -- 1.1. History of nanotechnology -- 1.2. Current trends in nanotechnology -- 2. Types of engineered nanomaterial -- 3. Environmental application of ENM -- 3.1. Medical application of nanoparticles -- 3.1.1. Disease treatment -- 3.1.2. Bio-analysis -- 3.1.3. Drug delivery -- 3.2. Application of nanoparticles in electronics and information technology -- 3.2.1. Nanotechnology to harvest renewable energy -- 3.2.2. Solar energy -- 3.2.3. Wind energy -- 3.3. Usage in personal care products -- 3.3.1. Composition and formulation of NP-cosmeceuticals -- 3.3.1.1. Nanocarriers in cosmetics -- 3.3.1.1.1. Metal oxide nanomaterials -- 3.3.1.1.2. Organic nanocarriers -- 3.4. Role of nanotechnology in agriculture -- 3.4.1. The development of nano bio-sensors for precision in agriculture -- 3.4.2. Direct usage of NP´s -- 3.4.3. Smart delivery system of NP´s in plant -- 3.4.3.1. Fertilizer industry -- 3.4.3.2. Pesticide industry -- 3.5. Application of nanotechnology in water purification -- 3.5.1. Process involved in water purification in relation to NPs -- 3.5.2. Composition/working-based classification of nanoparticles for water treatment -- 3.5.2.1. Magnetic nanoparticles -- 3.5.2.2. Carbon-based nanotubes and nano enhanced membranes -- 3.5.2.3. Nanocellulose-based membranes for water purification -- 3.5.2.4. Metal and metal oxide NPs in water treatment and purification -- 3.5.3. Effectiveness and limitations -- 3.6. Application of nanomaterials in food safety: From field to dining plate.
3.6.1. Nanotechnology for advance food packaging -- 3.6.2. Barriers to nanotechnology in food industry -- 4. Critical version of nanotechnology with reference to eco-toxicology -- 4.1. Inspect present to build our future -- 5. Future prospects of nanotechnology -- References -- Further reading -- Chapter Two: Plant-nanoparticle interactions: Mechanisms, effects, and approaches -- 1. Introduction -- 2. Nanoparticle uptake dynamics and mechanism -- 3. Biological effect and impact -- 4. Next generation approaches for toxicity studies: Perspective on omics-based tools -- 5. Applications of nanoparticles in plants for beneficial purposes -- 6. Conclusion and future prospects -- References -- Chapter Three: A general overview on application of nanoparticles in agriculture and plant science -- 1. Nanobiotechnology -- 2. Production of enzymes with nano-specific properties -- 3. Biological nano-sensors -- 4. Application of nanoparticles in environmental monitoring and diagnosis of pathogens -- 5. Application of nanotechnology in food industry -- 6. Application of nanotechnology in animal science -- 7. Role of nanotechnology in irrigation -- 8. Application of nanotechnology in agricultural machinery -- 9. Nanotechnology in agriculture and horticulture -- 10. The effect of nanoparticles on photosynthesis -- 11. Effect of nanotechnology on the food chain -- 12. Bioactive nano-sensors are used to prepare biological materials that can react quickly with target molecules -- 13. Nano-fertilizers and nano-insecticides -- 14. Converting agricultural wastes to nanoparticles -- 15. Conclusions -- References -- Chapter Four: Engineered nanomaterials uptake, bioaccumulation and toxicity mechanisms in plants -- 1. Introduction -- 2. Nanomaterials uptake by plants -- 3. Effects of ENMs exposure on plants physiological characteristics -- 4. Biochemical basis of ENMs toxicity.
5. Plant responses towards nanoparticle toxicity -- 6. Conclusion -- Acknowledgements -- References -- Chapter Five: Engineered nanomaterials in plants: Sensors, carriers, and bio-imaging -- 1. Introduction -- 1.1. Nanoparticles to engineered nanomaterials -- 1.2. Types of engineered nanomaterials -- 2. Applications of engineered nanomaterials in plants -- 2.1. ENMs as bio-carriers -- 2.2. ENMs as biosensors -- 2.2.1. Nano-mechanical biosensors -- 2.2.2. Biochips -- 2.2.3. PEBBLE nanosensors -- 2.2.4. Nano-biosensors for detection of plant metabolites -- 2.2.5. Nano-biosensors for detection antibacterial agents -- 2.2.6. Nano-biosensors for detection of plant pathogens -- 2.2.7. Detection of heavy metal contamination -- 2.3. ENMs as bio-imaging agents -- 3. Designing ENMs for plants -- 3.1. ENM uptake and translocation in plant cells -- 3.2. Functionalization of the ENMs -- 4. Phytotoxicity and engineered nanomaterials -- 5. Conclusion and future prospects -- References -- Chapter Six: Antioxidant role of nanoparticles for enhancing ecological performance of plant system -- 1. Introduction -- 2. Nanoparticles utility in plant science -- 3. Nanoparticles and their interaction with plant system -- 4. Antioxidative defence systems in plants -- 4.1. Impact of oxidative stress on ecological performance -- 4.2. Interaction of nanoparticles with antioxidant systems -- 4.3. Nanoparticles acting as antioxidants -- 5. Summary -- References -- Further reading -- Chapter Seven: Toxicity assessment of metal oxide nanoparticles on terrestrial plants -- 1. Nanoparticles -- 2. Production, applications and environmental concern -- 3. Sink of nanoparticles -- 4. Influence of nanoparticles on plants -- 5. Toxicity mechanism and effects on plants -- 6. Available techniques to detect presence of nanoparticles -- 7. Conclusion and future prospects -- Acknowledgements.
References -- Chapter Eight: Cerium oxide nanoparticles: Advances in synthesis, prospects and application in agro-ecosystem -- 1. Introduction -- 1.1. Cerium oxide nanoparticles (CeO2 NPs) sources in environment -- 1.1.1. Natural sources of CeO2 NPs -- 1.1.2. Anthropogenic sources of CeO2 NPs -- 2. Synthesis and characterization of CeO2 NPs -- 2.1. Green synthesis of CeO2 NPs -- 2.2. Nutrient mediated synthesis of CeO2 NPs -- 2.3. Chemical synthesis of CeO2 NPs -- 2.4. Characterization of CeO2 NPs -- 2.5. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) -- 2.5.1. XRD -- 2.6. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TE ... -- 3. Environmental application of CeO2 NPs -- 3.1. Biomedical application -- 3.1.1. Nanoceria and disease control -- 3.1.2. Industrial applications -- 3.1.3. Agriculture application -- 4. Fate of cerium oxide nanoparticles in soil -- 4.1. Solubility and transport in soil -- 4.2. Adsorption and coagulation of CeO2 NPs in soil -- 5. Fate of cerium oxide nanoparticles in plants -- 5.1. Uptake by plants -- 5.2. Transport in plants -- 5.3. Assimilation and transformation in plants -- 5.4. Biochemical interactions within plant matrices -- 5.5. Combating salinity and heavy metal stresses -- 6. Critics on the eco toxicological impacts of CeO2 NPs -- 6.1. Cellular specific toxicity of CeO2 NPs in humans and animals -- 6.2. CeO2 NPs negative influence on plants -- 7. Prospects -- 8. Summary -- References -- Further reading -- Chapter Nine: ZnO nanoparticle with promising antimicrobial and antiproliferation synergistic properties -- 1. Introduction -- 2. Antibacterial synergism -- 3. Synergistic effect of ZnO NPs in cancer -- 4. Conclusion -- Acknowledgement -- References.
Chapter Ten: Biologically synthesized nanomaterials and their antimicrobial potentials -- 1. Introduction -- 2. Biological synthesis of nanoparticles and its associated advantages -- 2.1. Nanoparticles synthesis using plants -- 2.2. Nanoparticles synthesis using microorganisms -- 3. Characterization of biologically synthesized nanoparticles -- 3.1. Spectroscopic techniques -- 3.1.1. UV-Vis spectrophotometry -- 3.1.2. Infrared (IR) spectroscopy -- 3.1.3. Fourier transform infrared (FTIR) spectroscopy -- 3.2. Microscopic techniques -- 3.2.1. Scanning electron microscopy (SEM) -- 3.2.2. Energy dispersive X-ray analysis -- 3.2.3. Transmission electron microscopy (TEM) -- 3.2.4. Scanning probe microscopes/scanning tunnelling microscope (SPM/STM) -- 3.3. Diffraction techniques -- 3.3.1. X-ray diffraction (XRD) -- 3.3.2. Dynamic light scattering (DLS) -- 3.3.3. Zeta potential measurement -- 4. Antimicrobial potential of biologically synthesized nanomaterials -- 4.1. Silver nanoparticles -- 4.2. Gold nanoparticles -- 4.3. Copper nanoparticles -- 4.4. Titanium and zinc nanoparticles -- References -- Chapter Eleven: Emerging plant-based anti-cancer green nanomaterials in present scenario -- 1. Introduction -- 1.1. General introduction about cancer -- 1.2. Cancer management -- 1.3. Role of nanomaterial´s to combat cancer -- 2. Role of phytochemicals to the synthesis of nano-biomaterials -- 2.1. Silver nanoparticles (AgNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Iron oxide nanoparticles -- 2.4. Titanium oxide nanoparticles -- 2.5. Cerium oxide nanoparticles -- 2.6. Bimetallic and nano-composite nanoparticles -- 2.6.1. Nano-composites -- 3. Parameters influencing the activity of nanomaterials -- 4. Emerging potential plant-based anti-cancer nanomaterials -- 5. Anti-cancer mechanisms of action of nanomaterials.
6. Future prospects of nanomaterials for cancer nanomedicine.
title_sub challenges for plant sustainability /
title_full Engineered nanomaterials and phytonanotechnology : challenges for plant sustainability / edited by Sandeep Kumar Verma, Ashok Kumar Das.
title_fullStr Engineered nanomaterials and phytonanotechnology : challenges for plant sustainability / edited by Sandeep Kumar Verma, Ashok Kumar Das.
title_full_unstemmed Engineered nanomaterials and phytonanotechnology : challenges for plant sustainability / edited by Sandeep Kumar Verma, Ashok Kumar Das.
title_auth Engineered nanomaterials and phytonanotechnology : challenges for plant sustainability /
title_new Engineered nanomaterials and phytonanotechnology :
title_sort engineered nanomaterials and phytonanotechnology : challenges for plant sustainability /
series Comprehensive analytical chemistry ;
series2 Comprehensive analytical chemistry ;
publisher Elsevier,
publishDate 2019
physical 1 online resource (344 pages).
contents Front Cover -- Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability -- Copyright -- Contents -- Contributors to volume 87 -- About the editors -- Preface -- Chapter One: Environmental application of nanomaterials: A promise to sustainable future -- 1. Introduction to nano-technology: Historical background and current trends in application -- 1.1. History of nanotechnology -- 1.2. Current trends in nanotechnology -- 2. Types of engineered nanomaterial -- 3. Environmental application of ENM -- 3.1. Medical application of nanoparticles -- 3.1.1. Disease treatment -- 3.1.2. Bio-analysis -- 3.1.3. Drug delivery -- 3.2. Application of nanoparticles in electronics and information technology -- 3.2.1. Nanotechnology to harvest renewable energy -- 3.2.2. Solar energy -- 3.2.3. Wind energy -- 3.3. Usage in personal care products -- 3.3.1. Composition and formulation of NP-cosmeceuticals -- 3.3.1.1. Nanocarriers in cosmetics -- 3.3.1.1.1. Metal oxide nanomaterials -- 3.3.1.1.2. Organic nanocarriers -- 3.4. Role of nanotechnology in agriculture -- 3.4.1. The development of nano bio-sensors for precision in agriculture -- 3.4.2. Direct usage of NP´s -- 3.4.3. Smart delivery system of NP´s in plant -- 3.4.3.1. Fertilizer industry -- 3.4.3.2. Pesticide industry -- 3.5. Application of nanotechnology in water purification -- 3.5.1. Process involved in water purification in relation to NPs -- 3.5.2. Composition/working-based classification of nanoparticles for water treatment -- 3.5.2.1. Magnetic nanoparticles -- 3.5.2.2. Carbon-based nanotubes and nano enhanced membranes -- 3.5.2.3. Nanocellulose-based membranes for water purification -- 3.5.2.4. Metal and metal oxide NPs in water treatment and purification -- 3.5.3. Effectiveness and limitations -- 3.6. Application of nanomaterials in food safety: From field to dining plate.
3.6.1. Nanotechnology for advance food packaging -- 3.6.2. Barriers to nanotechnology in food industry -- 4. Critical version of nanotechnology with reference to eco-toxicology -- 4.1. Inspect present to build our future -- 5. Future prospects of nanotechnology -- References -- Further reading -- Chapter Two: Plant-nanoparticle interactions: Mechanisms, effects, and approaches -- 1. Introduction -- 2. Nanoparticle uptake dynamics and mechanism -- 3. Biological effect and impact -- 4. Next generation approaches for toxicity studies: Perspective on omics-based tools -- 5. Applications of nanoparticles in plants for beneficial purposes -- 6. Conclusion and future prospects -- References -- Chapter Three: A general overview on application of nanoparticles in agriculture and plant science -- 1. Nanobiotechnology -- 2. Production of enzymes with nano-specific properties -- 3. Biological nano-sensors -- 4. Application of nanoparticles in environmental monitoring and diagnosis of pathogens -- 5. Application of nanotechnology in food industry -- 6. Application of nanotechnology in animal science -- 7. Role of nanotechnology in irrigation -- 8. Application of nanotechnology in agricultural machinery -- 9. Nanotechnology in agriculture and horticulture -- 10. The effect of nanoparticles on photosynthesis -- 11. Effect of nanotechnology on the food chain -- 12. Bioactive nano-sensors are used to prepare biological materials that can react quickly with target molecules -- 13. Nano-fertilizers and nano-insecticides -- 14. Converting agricultural wastes to nanoparticles -- 15. Conclusions -- References -- Chapter Four: Engineered nanomaterials uptake, bioaccumulation and toxicity mechanisms in plants -- 1. Introduction -- 2. Nanomaterials uptake by plants -- 3. Effects of ENMs exposure on plants physiological characteristics -- 4. Biochemical basis of ENMs toxicity.
5. Plant responses towards nanoparticle toxicity -- 6. Conclusion -- Acknowledgements -- References -- Chapter Five: Engineered nanomaterials in plants: Sensors, carriers, and bio-imaging -- 1. Introduction -- 1.1. Nanoparticles to engineered nanomaterials -- 1.2. Types of engineered nanomaterials -- 2. Applications of engineered nanomaterials in plants -- 2.1. ENMs as bio-carriers -- 2.2. ENMs as biosensors -- 2.2.1. Nano-mechanical biosensors -- 2.2.2. Biochips -- 2.2.3. PEBBLE nanosensors -- 2.2.4. Nano-biosensors for detection of plant metabolites -- 2.2.5. Nano-biosensors for detection antibacterial agents -- 2.2.6. Nano-biosensors for detection of plant pathogens -- 2.2.7. Detection of heavy metal contamination -- 2.3. ENMs as bio-imaging agents -- 3. Designing ENMs for plants -- 3.1. ENM uptake and translocation in plant cells -- 3.2. Functionalization of the ENMs -- 4. Phytotoxicity and engineered nanomaterials -- 5. Conclusion and future prospects -- References -- Chapter Six: Antioxidant role of nanoparticles for enhancing ecological performance of plant system -- 1. Introduction -- 2. Nanoparticles utility in plant science -- 3. Nanoparticles and their interaction with plant system -- 4. Antioxidative defence systems in plants -- 4.1. Impact of oxidative stress on ecological performance -- 4.2. Interaction of nanoparticles with antioxidant systems -- 4.3. Nanoparticles acting as antioxidants -- 5. Summary -- References -- Further reading -- Chapter Seven: Toxicity assessment of metal oxide nanoparticles on terrestrial plants -- 1. Nanoparticles -- 2. Production, applications and environmental concern -- 3. Sink of nanoparticles -- 4. Influence of nanoparticles on plants -- 5. Toxicity mechanism and effects on plants -- 6. Available techniques to detect presence of nanoparticles -- 7. Conclusion and future prospects -- Acknowledgements.
References -- Chapter Eight: Cerium oxide nanoparticles: Advances in synthesis, prospects and application in agro-ecosystem -- 1. Introduction -- 1.1. Cerium oxide nanoparticles (CeO2 NPs) sources in environment -- 1.1.1. Natural sources of CeO2 NPs -- 1.1.2. Anthropogenic sources of CeO2 NPs -- 2. Synthesis and characterization of CeO2 NPs -- 2.1. Green synthesis of CeO2 NPs -- 2.2. Nutrient mediated synthesis of CeO2 NPs -- 2.3. Chemical synthesis of CeO2 NPs -- 2.4. Characterization of CeO2 NPs -- 2.5. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) -- 2.5.1. XRD -- 2.6. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TE ... -- 3. Environmental application of CeO2 NPs -- 3.1. Biomedical application -- 3.1.1. Nanoceria and disease control -- 3.1.2. Industrial applications -- 3.1.3. Agriculture application -- 4. Fate of cerium oxide nanoparticles in soil -- 4.1. Solubility and transport in soil -- 4.2. Adsorption and coagulation of CeO2 NPs in soil -- 5. Fate of cerium oxide nanoparticles in plants -- 5.1. Uptake by plants -- 5.2. Transport in plants -- 5.3. Assimilation and transformation in plants -- 5.4. Biochemical interactions within plant matrices -- 5.5. Combating salinity and heavy metal stresses -- 6. Critics on the eco toxicological impacts of CeO2 NPs -- 6.1. Cellular specific toxicity of CeO2 NPs in humans and animals -- 6.2. CeO2 NPs negative influence on plants -- 7. Prospects -- 8. Summary -- References -- Further reading -- Chapter Nine: ZnO nanoparticle with promising antimicrobial and antiproliferation synergistic properties -- 1. Introduction -- 2. Antibacterial synergism -- 3. Synergistic effect of ZnO NPs in cancer -- 4. Conclusion -- Acknowledgement -- References.
Chapter Ten: Biologically synthesized nanomaterials and their antimicrobial potentials -- 1. Introduction -- 2. Biological synthesis of nanoparticles and its associated advantages -- 2.1. Nanoparticles synthesis using plants -- 2.2. Nanoparticles synthesis using microorganisms -- 3. Characterization of biologically synthesized nanoparticles -- 3.1. Spectroscopic techniques -- 3.1.1. UV-Vis spectrophotometry -- 3.1.2. Infrared (IR) spectroscopy -- 3.1.3. Fourier transform infrared (FTIR) spectroscopy -- 3.2. Microscopic techniques -- 3.2.1. Scanning electron microscopy (SEM) -- 3.2.2. Energy dispersive X-ray analysis -- 3.2.3. Transmission electron microscopy (TEM) -- 3.2.4. Scanning probe microscopes/scanning tunnelling microscope (SPM/STM) -- 3.3. Diffraction techniques -- 3.3.1. X-ray diffraction (XRD) -- 3.3.2. Dynamic light scattering (DLS) -- 3.3.3. Zeta potential measurement -- 4. Antimicrobial potential of biologically synthesized nanomaterials -- 4.1. Silver nanoparticles -- 4.2. Gold nanoparticles -- 4.3. Copper nanoparticles -- 4.4. Titanium and zinc nanoparticles -- References -- Chapter Eleven: Emerging plant-based anti-cancer green nanomaterials in present scenario -- 1. Introduction -- 1.1. General introduction about cancer -- 1.2. Cancer management -- 1.3. Role of nanomaterial´s to combat cancer -- 2. Role of phytochemicals to the synthesis of nano-biomaterials -- 2.1. Silver nanoparticles (AgNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Iron oxide nanoparticles -- 2.4. Titanium oxide nanoparticles -- 2.5. Cerium oxide nanoparticles -- 2.6. Bimetallic and nano-composite nanoparticles -- 2.6.1. Nano-composites -- 3. Parameters influencing the activity of nanomaterials -- 4. Emerging potential plant-based anti-cancer nanomaterials -- 5. Anti-cancer mechanisms of action of nanomaterials.
6. Future prospects of nanomaterials for cancer nanomedicine.
isbn 0-12-821321-3
0-12-821320-5
callnumber-first Q - Science
callnumber-subject QK - Botany
callnumber-label QK754
callnumber-sort QK 3754 E545 42019
illustrated Not Illustrated
dewey-hundreds 500 - Science
dewey-tens 570 - Life sciences; biology
dewey-ones 571 - Physiology & related subjects
572 - Biochemistry
dewey-full 571.742
572.82928
dewey-sort 3571.742
dewey-raw 571.742
572.82928
dewey-search 571.742
572.82928
work_keys_str_mv AT vermasandeepkumar engineerednanomaterialsandphytonanotechnologychallengesforplantsustainability
AT dasak engineerednanomaterialsandphytonanotechnologychallengesforplantsustainability
status_str n
ids_txt_mv (CKB)4100000009842610
(MiAaPQ)EBC5982937
(EXLCZ)994100000009842610
carrierType_str_mv cr
hierarchy_parent_title Comprehensive analytical chemistry ; Volume 87
hierarchy_sequence Volume 87.
is_hierarchy_title Engineered nanomaterials and phytonanotechnology : challenges for plant sustainability /
container_title Comprehensive analytical chemistry ; Volume 87
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1804798541724385280
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10715nam a2200409 i 4500</leader><controlfield tag="001">993603656804498</controlfield><controlfield tag="005">20240513011137.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">191211s2019 ne o 000 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0-12-821321-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0-12-821320-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4100000009842610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC5982937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994100000009842610</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QK754</subfield><subfield code="b">.E545 2019</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.742</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1=" " ind2=" "><subfield code="a">572.82928</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Engineered nanomaterials and phytonanotechnology :</subfield><subfield code="b">challenges for plant sustainability /</subfield><subfield code="c">edited by Sandeep Kumar Verma, Ashok Kumar Das.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands ;</subfield><subfield code="a">Oxford, England ;</subfield><subfield code="a">Cambridge, Massachusetts :</subfield><subfield code="b">Elsevier,</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (344 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Comprehensive analytical chemistry ;</subfield><subfield code="v">Volume 87</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability -- Copyright -- Contents -- Contributors to volume 87 -- About the editors -- Preface -- Chapter One: Environmental application of nanomaterials: A promise to sustainable future -- 1. Introduction to nano-technology: Historical background and current trends in application -- 1.1. History of nanotechnology -- 1.2. Current trends in nanotechnology -- 2. Types of engineered nanomaterial -- 3. Environmental application of ENM -- 3.1. Medical application of nanoparticles -- 3.1.1. Disease treatment -- 3.1.2. Bio-analysis -- 3.1.3. Drug delivery -- 3.2. Application of nanoparticles in electronics and information technology -- 3.2.1. Nanotechnology to harvest renewable energy -- 3.2.2. Solar energy -- 3.2.3. Wind energy -- 3.3. Usage in personal care products -- 3.3.1. Composition and formulation of NP-cosmeceuticals -- 3.3.1.1. Nanocarriers in cosmetics -- 3.3.1.1.1. Metal oxide nanomaterials -- 3.3.1.1.2. Organic nanocarriers -- 3.4. Role of nanotechnology in agriculture -- 3.4.1. The development of nano bio-sensors for precision in agriculture -- 3.4.2. Direct usage of NP´s -- 3.4.3. Smart delivery system of NP´s in plant -- 3.4.3.1. Fertilizer industry -- 3.4.3.2. Pesticide industry -- 3.5. Application of nanotechnology in water purification -- 3.5.1. Process involved in water purification in relation to NPs -- 3.5.2. Composition/working-based classification of nanoparticles for water treatment -- 3.5.2.1. Magnetic nanoparticles -- 3.5.2.2. Carbon-based nanotubes and nano enhanced membranes -- 3.5.2.3. Nanocellulose-based membranes for water purification -- 3.5.2.4. Metal and metal oxide NPs in water treatment and purification -- 3.5.3. Effectiveness and limitations -- 3.6. Application of nanomaterials in food safety: From field to dining plate.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6.1. Nanotechnology for advance food packaging -- 3.6.2. Barriers to nanotechnology in food industry -- 4. Critical version of nanotechnology with reference to eco-toxicology -- 4.1. Inspect present to build our future -- 5. Future prospects of nanotechnology -- References -- Further reading -- Chapter Two: Plant-nanoparticle interactions: Mechanisms, effects, and approaches -- 1. Introduction -- 2. Nanoparticle uptake dynamics and mechanism -- 3. Biological effect and impact -- 4. Next generation approaches for toxicity studies: Perspective on omics-based tools -- 5. Applications of nanoparticles in plants for beneficial purposes -- 6. Conclusion and future prospects -- References -- Chapter Three: A general overview on application of nanoparticles in agriculture and plant science -- 1. Nanobiotechnology -- 2. Production of enzymes with nano-specific properties -- 3. Biological nano-sensors -- 4. Application of nanoparticles in environmental monitoring and diagnosis of pathogens -- 5. Application of nanotechnology in food industry -- 6. Application of nanotechnology in animal science -- 7. Role of nanotechnology in irrigation -- 8. Application of nanotechnology in agricultural machinery -- 9. Nanotechnology in agriculture and horticulture -- 10. The effect of nanoparticles on photosynthesis -- 11. Effect of nanotechnology on the food chain -- 12. Bioactive nano-sensors are used to prepare biological materials that can react quickly with target molecules -- 13. Nano-fertilizers and nano-insecticides -- 14. Converting agricultural wastes to nanoparticles -- 15. Conclusions -- References -- Chapter Four: Engineered nanomaterials uptake, bioaccumulation and toxicity mechanisms in plants -- 1. Introduction -- 2. Nanomaterials uptake by plants -- 3. Effects of ENMs exposure on plants physiological characteristics -- 4. Biochemical basis of ENMs toxicity.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Plant responses towards nanoparticle toxicity -- 6. Conclusion -- Acknowledgements -- References -- Chapter Five: Engineered nanomaterials in plants: Sensors, carriers, and bio-imaging -- 1. Introduction -- 1.1. Nanoparticles to engineered nanomaterials -- 1.2. Types of engineered nanomaterials -- 2. Applications of engineered nanomaterials in plants -- 2.1. ENMs as bio-carriers -- 2.2. ENMs as biosensors -- 2.2.1. Nano-mechanical biosensors -- 2.2.2. Biochips -- 2.2.3. PEBBLE nanosensors -- 2.2.4. Nano-biosensors for detection of plant metabolites -- 2.2.5. Nano-biosensors for detection antibacterial agents -- 2.2.6. Nano-biosensors for detection of plant pathogens -- 2.2.7. Detection of heavy metal contamination -- 2.3. ENMs as bio-imaging agents -- 3. Designing ENMs for plants -- 3.1. ENM uptake and translocation in plant cells -- 3.2. Functionalization of the ENMs -- 4. Phytotoxicity and engineered nanomaterials -- 5. Conclusion and future prospects -- References -- Chapter Six: Antioxidant role of nanoparticles for enhancing ecological performance of plant system -- 1. Introduction -- 2. Nanoparticles utility in plant science -- 3. Nanoparticles and their interaction with plant system -- 4. Antioxidative defence systems in plants -- 4.1. Impact of oxidative stress on ecological performance -- 4.2. Interaction of nanoparticles with antioxidant systems -- 4.3. Nanoparticles acting as antioxidants -- 5. Summary -- References -- Further reading -- Chapter Seven: Toxicity assessment of metal oxide nanoparticles on terrestrial plants -- 1. Nanoparticles -- 2. Production, applications and environmental concern -- 3. Sink of nanoparticles -- 4. Influence of nanoparticles on plants -- 5. Toxicity mechanism and effects on plants -- 6. Available techniques to detect presence of nanoparticles -- 7. Conclusion and future prospects -- Acknowledgements.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter Eight: Cerium oxide nanoparticles: Advances in synthesis, prospects and application in agro-ecosystem -- 1. Introduction -- 1.1. Cerium oxide nanoparticles (CeO2 NPs) sources in environment -- 1.1.1. Natural sources of CeO2 NPs -- 1.1.2. Anthropogenic sources of CeO2 NPs -- 2. Synthesis and characterization of CeO2 NPs -- 2.1. Green synthesis of CeO2 NPs -- 2.2. Nutrient mediated synthesis of CeO2 NPs -- 2.3. Chemical synthesis of CeO2 NPs -- 2.4. Characterization of CeO2 NPs -- 2.5. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) -- 2.5.1. XRD -- 2.6. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TE ... -- 3. Environmental application of CeO2 NPs -- 3.1. Biomedical application -- 3.1.1. Nanoceria and disease control -- 3.1.2. Industrial applications -- 3.1.3. Agriculture application -- 4. Fate of cerium oxide nanoparticles in soil -- 4.1. Solubility and transport in soil -- 4.2. Adsorption and coagulation of CeO2 NPs in soil -- 5. Fate of cerium oxide nanoparticles in plants -- 5.1. Uptake by plants -- 5.2. Transport in plants -- 5.3. Assimilation and transformation in plants -- 5.4. Biochemical interactions within plant matrices -- 5.5. Combating salinity and heavy metal stresses -- 6. Critics on the eco toxicological impacts of CeO2 NPs -- 6.1. Cellular specific toxicity of CeO2 NPs in humans and animals -- 6.2. CeO2 NPs negative influence on plants -- 7. Prospects -- 8. Summary -- References -- Further reading -- Chapter Nine: ZnO nanoparticle with promising antimicrobial and antiproliferation synergistic properties -- 1. Introduction -- 2. Antibacterial synergism -- 3. Synergistic effect of ZnO NPs in cancer -- 4. Conclusion -- Acknowledgement -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter Ten: Biologically synthesized nanomaterials and their antimicrobial potentials -- 1. Introduction -- 2. Biological synthesis of nanoparticles and its associated advantages -- 2.1. Nanoparticles synthesis using plants -- 2.2. Nanoparticles synthesis using microorganisms -- 3. Characterization of biologically synthesized nanoparticles -- 3.1. Spectroscopic techniques -- 3.1.1. UV-Vis spectrophotometry -- 3.1.2. Infrared (IR) spectroscopy -- 3.1.3. Fourier transform infrared (FTIR) spectroscopy -- 3.2. Microscopic techniques -- 3.2.1. Scanning electron microscopy (SEM) -- 3.2.2. Energy dispersive X-ray analysis -- 3.2.3. Transmission electron microscopy (TEM) -- 3.2.4. Scanning probe microscopes/scanning tunnelling microscope (SPM/STM) -- 3.3. Diffraction techniques -- 3.3.1. X-ray diffraction (XRD) -- 3.3.2. Dynamic light scattering (DLS) -- 3.3.3. Zeta potential measurement -- 4. Antimicrobial potential of biologically synthesized nanomaterials -- 4.1. Silver nanoparticles -- 4.2. Gold nanoparticles -- 4.3. Copper nanoparticles -- 4.4. Titanium and zinc nanoparticles -- References -- Chapter Eleven: Emerging plant-based anti-cancer green nanomaterials in present scenario -- 1. Introduction -- 1.1. General introduction about cancer -- 1.2. Cancer management -- 1.3. Role of nanomaterial´s to combat cancer -- 2. Role of phytochemicals to the synthesis of nano-biomaterials -- 2.1. Silver nanoparticles (AgNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Iron oxide nanoparticles -- 2.4. Titanium oxide nanoparticles -- 2.5. Cerium oxide nanoparticles -- 2.6. Bimetallic and nano-composite nanoparticles -- 2.6.1. Nano-composites -- 3. Parameters influencing the activity of nanomaterials -- 4. Emerging potential plant-based anti-cancer nanomaterials -- 5. Anti-cancer mechanisms of action of nanomaterials.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Future prospects of nanomaterials for cancer nanomedicine.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Plants</subfield><subfield code="x">Effect of stress on</subfield><subfield code="x">Molecular aspects.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verma, Sandeep Kumar,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, A. K.</subfield><subfield code="q">(Ashok Kumar),</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Comprehensive analytical chemistry ;</subfield><subfield code="v">Volume 87.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-07-17 04:11:07 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2019-11-30 20:08:44 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338972910004498&amp;Force_direct=true</subfield><subfield code="Z">5338972910004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338972910004498</subfield></datafield></record></collection>