Engineered nanomaterials and phytonanotechnology : : challenges for plant sustainability / / edited by Sandeep Kumar Verma, Ashok Kumar Das.

Saved in:
Bibliographic Details
Superior document:Comprehensive analytical chemistry ; Volume 87
TeilnehmendeR:
Place / Publishing House:Amsterdam, Netherlands ;, Oxford, England ;, Cambridge, Massachusetts : : Elsevier,, [2019]
©2019
Year of Publication:2019
Language:English
Series:Comprehensive analytical chemistry ; Volume 87.
Physical Description:1 online resource (344 pages).
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 10715nam a2200409 i 4500
001 993603656804498
005 20240513011137.0
006 m o d |
007 cr cnu||||||||
008 191211s2019 ne o 000 0 eng d
020 |a 0-12-821321-3 
020 |a 0-12-821320-5 
035 |a (CKB)4100000009842610 
035 |a (MiAaPQ)EBC5982937 
035 |a (EXLCZ)994100000009842610 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a QK754  |b .E545 2019 
082 0 |a 571.742  |2 23 
082 |a 572.82928 
245 0 0 |a Engineered nanomaterials and phytonanotechnology :  |b challenges for plant sustainability /  |c edited by Sandeep Kumar Verma, Ashok Kumar Das. 
264 1 |a Amsterdam, Netherlands ;  |a Oxford, England ;  |a Cambridge, Massachusetts :  |b Elsevier,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (344 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Comprehensive analytical chemistry ;  |v Volume 87 
588 |a Description based on print version record. 
505 0 |a Front Cover -- Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability -- Copyright -- Contents -- Contributors to volume 87 -- About the editors -- Preface -- Chapter One: Environmental application of nanomaterials: A promise to sustainable future -- 1. Introduction to nano-technology: Historical background and current trends in application -- 1.1. History of nanotechnology -- 1.2. Current trends in nanotechnology -- 2. Types of engineered nanomaterial -- 3. Environmental application of ENM -- 3.1. Medical application of nanoparticles -- 3.1.1. Disease treatment -- 3.1.2. Bio-analysis -- 3.1.3. Drug delivery -- 3.2. Application of nanoparticles in electronics and information technology -- 3.2.1. Nanotechnology to harvest renewable energy -- 3.2.2. Solar energy -- 3.2.3. Wind energy -- 3.3. Usage in personal care products -- 3.3.1. Composition and formulation of NP-cosmeceuticals -- 3.3.1.1. Nanocarriers in cosmetics -- 3.3.1.1.1. Metal oxide nanomaterials -- 3.3.1.1.2. Organic nanocarriers -- 3.4. Role of nanotechnology in agriculture -- 3.4.1. The development of nano bio-sensors for precision in agriculture -- 3.4.2. Direct usage of NP´s -- 3.4.3. Smart delivery system of NP´s in plant -- 3.4.3.1. Fertilizer industry -- 3.4.3.2. Pesticide industry -- 3.5. Application of nanotechnology in water purification -- 3.5.1. Process involved in water purification in relation to NPs -- 3.5.2. Composition/working-based classification of nanoparticles for water treatment -- 3.5.2.1. Magnetic nanoparticles -- 3.5.2.2. Carbon-based nanotubes and nano enhanced membranes -- 3.5.2.3. Nanocellulose-based membranes for water purification -- 3.5.2.4. Metal and metal oxide NPs in water treatment and purification -- 3.5.3. Effectiveness and limitations -- 3.6. Application of nanomaterials in food safety: From field to dining plate. 
505 8 |a 3.6.1. Nanotechnology for advance food packaging -- 3.6.2. Barriers to nanotechnology in food industry -- 4. Critical version of nanotechnology with reference to eco-toxicology -- 4.1. Inspect present to build our future -- 5. Future prospects of nanotechnology -- References -- Further reading -- Chapter Two: Plant-nanoparticle interactions: Mechanisms, effects, and approaches -- 1. Introduction -- 2. Nanoparticle uptake dynamics and mechanism -- 3. Biological effect and impact -- 4. Next generation approaches for toxicity studies: Perspective on omics-based tools -- 5. Applications of nanoparticles in plants for beneficial purposes -- 6. Conclusion and future prospects -- References -- Chapter Three: A general overview on application of nanoparticles in agriculture and plant science -- 1. Nanobiotechnology -- 2. Production of enzymes with nano-specific properties -- 3. Biological nano-sensors -- 4. Application of nanoparticles in environmental monitoring and diagnosis of pathogens -- 5. Application of nanotechnology in food industry -- 6. Application of nanotechnology in animal science -- 7. Role of nanotechnology in irrigation -- 8. Application of nanotechnology in agricultural machinery -- 9. Nanotechnology in agriculture and horticulture -- 10. The effect of nanoparticles on photosynthesis -- 11. Effect of nanotechnology on the food chain -- 12. Bioactive nano-sensors are used to prepare biological materials that can react quickly with target molecules -- 13. Nano-fertilizers and nano-insecticides -- 14. Converting agricultural wastes to nanoparticles -- 15. Conclusions -- References -- Chapter Four: Engineered nanomaterials uptake, bioaccumulation and toxicity mechanisms in plants -- 1. Introduction -- 2. Nanomaterials uptake by plants -- 3. Effects of ENMs exposure on plants physiological characteristics -- 4. Biochemical basis of ENMs toxicity. 
505 8 |a 5. Plant responses towards nanoparticle toxicity -- 6. Conclusion -- Acknowledgements -- References -- Chapter Five: Engineered nanomaterials in plants: Sensors, carriers, and bio-imaging -- 1. Introduction -- 1.1. Nanoparticles to engineered nanomaterials -- 1.2. Types of engineered nanomaterials -- 2. Applications of engineered nanomaterials in plants -- 2.1. ENMs as bio-carriers -- 2.2. ENMs as biosensors -- 2.2.1. Nano-mechanical biosensors -- 2.2.2. Biochips -- 2.2.3. PEBBLE nanosensors -- 2.2.4. Nano-biosensors for detection of plant metabolites -- 2.2.5. Nano-biosensors for detection antibacterial agents -- 2.2.6. Nano-biosensors for detection of plant pathogens -- 2.2.7. Detection of heavy metal contamination -- 2.3. ENMs as bio-imaging agents -- 3. Designing ENMs for plants -- 3.1. ENM uptake and translocation in plant cells -- 3.2. Functionalization of the ENMs -- 4. Phytotoxicity and engineered nanomaterials -- 5. Conclusion and future prospects -- References -- Chapter Six: Antioxidant role of nanoparticles for enhancing ecological performance of plant system -- 1. Introduction -- 2. Nanoparticles utility in plant science -- 3. Nanoparticles and their interaction with plant system -- 4. Antioxidative defence systems in plants -- 4.1. Impact of oxidative stress on ecological performance -- 4.2. Interaction of nanoparticles with antioxidant systems -- 4.3. Nanoparticles acting as antioxidants -- 5. Summary -- References -- Further reading -- Chapter Seven: Toxicity assessment of metal oxide nanoparticles on terrestrial plants -- 1. Nanoparticles -- 2. Production, applications and environmental concern -- 3. Sink of nanoparticles -- 4. Influence of nanoparticles on plants -- 5. Toxicity mechanism and effects on plants -- 6. Available techniques to detect presence of nanoparticles -- 7. Conclusion and future prospects -- Acknowledgements. 
505 8 |a References -- Chapter Eight: Cerium oxide nanoparticles: Advances in synthesis, prospects and application in agro-ecosystem -- 1. Introduction -- 1.1. Cerium oxide nanoparticles (CeO2 NPs) sources in environment -- 1.1.1. Natural sources of CeO2 NPs -- 1.1.2. Anthropogenic sources of CeO2 NPs -- 2. Synthesis and characterization of CeO2 NPs -- 2.1. Green synthesis of CeO2 NPs -- 2.2. Nutrient mediated synthesis of CeO2 NPs -- 2.3. Chemical synthesis of CeO2 NPs -- 2.4. Characterization of CeO2 NPs -- 2.5. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) -- 2.5.1. XRD -- 2.6. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TE ... -- 3. Environmental application of CeO2 NPs -- 3.1. Biomedical application -- 3.1.1. Nanoceria and disease control -- 3.1.2. Industrial applications -- 3.1.3. Agriculture application -- 4. Fate of cerium oxide nanoparticles in soil -- 4.1. Solubility and transport in soil -- 4.2. Adsorption and coagulation of CeO2 NPs in soil -- 5. Fate of cerium oxide nanoparticles in plants -- 5.1. Uptake by plants -- 5.2. Transport in plants -- 5.3. Assimilation and transformation in plants -- 5.4. Biochemical interactions within plant matrices -- 5.5. Combating salinity and heavy metal stresses -- 6. Critics on the eco toxicological impacts of CeO2 NPs -- 6.1. Cellular specific toxicity of CeO2 NPs in humans and animals -- 6.2. CeO2 NPs negative influence on plants -- 7. Prospects -- 8. Summary -- References -- Further reading -- Chapter Nine: ZnO nanoparticle with promising antimicrobial and antiproliferation synergistic properties -- 1. Introduction -- 2. Antibacterial synergism -- 3. Synergistic effect of ZnO NPs in cancer -- 4. Conclusion -- Acknowledgement -- References. 
505 8 |a Chapter Ten: Biologically synthesized nanomaterials and their antimicrobial potentials -- 1. Introduction -- 2. Biological synthesis of nanoparticles and its associated advantages -- 2.1. Nanoparticles synthesis using plants -- 2.2. Nanoparticles synthesis using microorganisms -- 3. Characterization of biologically synthesized nanoparticles -- 3.1. Spectroscopic techniques -- 3.1.1. UV-Vis spectrophotometry -- 3.1.2. Infrared (IR) spectroscopy -- 3.1.3. Fourier transform infrared (FTIR) spectroscopy -- 3.2. Microscopic techniques -- 3.2.1. Scanning electron microscopy (SEM) -- 3.2.2. Energy dispersive X-ray analysis -- 3.2.3. Transmission electron microscopy (TEM) -- 3.2.4. Scanning probe microscopes/scanning tunnelling microscope (SPM/STM) -- 3.3. Diffraction techniques -- 3.3.1. X-ray diffraction (XRD) -- 3.3.2. Dynamic light scattering (DLS) -- 3.3.3. Zeta potential measurement -- 4. Antimicrobial potential of biologically synthesized nanomaterials -- 4.1. Silver nanoparticles -- 4.2. Gold nanoparticles -- 4.3. Copper nanoparticles -- 4.4. Titanium and zinc nanoparticles -- References -- Chapter Eleven: Emerging plant-based anti-cancer green nanomaterials in present scenario -- 1. Introduction -- 1.1. General introduction about cancer -- 1.2. Cancer management -- 1.3. Role of nanomaterial´s to combat cancer -- 2. Role of phytochemicals to the synthesis of nano-biomaterials -- 2.1. Silver nanoparticles (AgNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Iron oxide nanoparticles -- 2.4. Titanium oxide nanoparticles -- 2.5. Cerium oxide nanoparticles -- 2.6. Bimetallic and nano-composite nanoparticles -- 2.6.1. Nano-composites -- 3. Parameters influencing the activity of nanomaterials -- 4. Emerging potential plant-based anti-cancer nanomaterials -- 5. Anti-cancer mechanisms of action of nanomaterials. 
505 8 |a 6. Future prospects of nanomaterials for cancer nanomedicine. 
650 0 |a Plants  |x Effect of stress on  |x Molecular aspects. 
700 1 |a Verma, Sandeep Kumar,  |e editor. 
700 1 |a Das, A. K.  |q (Ashok Kumar),  |e editor. 
830 0 |a Comprehensive analytical chemistry ;  |v Volume 87. 
906 |a BOOK 
ADM |b 2024-07-17 04:11:07 Europe/Vienna  |f system  |c marc21  |a 2019-11-30 20:08:44 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338972910004498&Force_direct=true  |Z 5338972910004498  |b Available  |8 5338972910004498