Xenopus : : from basic biology to disease models in the genomic era / / edited by Abraham Fainsod, Sally A. Moody.

"Xenopus is unique among the model animals used in the biology. Several books of protocols used Xenopus. Missing is a book taking an historical perspective documenting cell and developmental discoveries and illustrating how Xenopus contributes to the understanding of genes. These topics will be...

Full description

Saved in:
Bibliographic Details
TeilnehmendeR:
Place / Publishing House:Boca Raton : : Taylor & Francis,, 2022.
©2022
Year of Publication:2022
Language:English
Physical Description:1 online resource (360 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993603406904498
ctrlnum (CKB)5860000000016677
(NjHacI)995860000000016677
(EXLCZ)995860000000016677
collection bib_alma
record_format marc
spelling Xenopus : from basic biology to disease models in the genomic era / edited by Abraham Fainsod, Sally A. Moody.
Xenopus
Boca Raton : Taylor & Francis, 2022.
©2022
1 online resource (360 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on: online resource; title from PDF information screen (JSTOR, viewed May 16, 2023).
"Xenopus is unique among the model animals used in the biology. Several books of protocols used Xenopus. Missing is a book taking an historical perspective documenting cell and developmental discoveries and illustrating how Xenopus contributes to the understanding of genes. These topics will be covered in the proposed book"-- Provided by publisher.
Includes bibliographical references and index.
Section I. -- 1. A quick history of Xenopus. -- 2. The study of cell division controla and DNA replication in Xenopus egg extracts. -- 3. Maternal gene control of embryogenesis: germ cell determination and germ layer formation. -- 4. Signaling components in dorsal-ventral patterning and the Organizer. -- 5. Signaling pathways in anterior-posterior patterning. -- 6. Wnt signaling in tissue differentiation and morphogenesis. -- 7. Multiple functions of Notch signaling during early embryogenesis. -- 8. The development and evolution of the vertebrate neural crest: Insights from Xenopus. -- 9. The use of Xenopus oocytes to study the biophysics and pharmacological properties of receptors and channels. -- Section II. -- 10. The continuing evolution of the Xenopus genome. -- 11. Dynamics of chromatin remodeling during Xenopus development. -- 12. Gene regulatory networks controlling Xenopus embryogenesis. -- 13. The development of high-resolution proteomic analyses in Xenopus. -- 14. Advances in genome editing tools. -- Section III. -- 15. Formation of the left-right axis: insights from the Xenopus model. -- 16. Discovering the function of congenital heart disease genes. -- 17. Craniofacial development and disorders - contributions of Xenopus. -- 18. Modeling digestive and respiratory system development and disease in Xenopus. -- 19. Functional neurobiology and insights into human disease. -- 20. Leaping towards the understanding of spinal cord regeneration. -- 21. Studying tumor formation and regulation in Xenopus. -- 22. Xenopus: a model to study natural genetic variation and its disease implications. -- 23. Using Xenopus to understand pluripotency and reprogram cells for therapeutic use. Maternal gene control of embryogenesis. -- Chapter 8: Sex determination in Xenopus. -- Section II: Gene Discovery and Disease. -- Chapter 9: Xenopus and the discovery of developmental genes. -- Chapter 10: Systems Biology of Xenopus Embryogenesis. -- Chapter 11: Gene regulatory networks in craniofacial development. -- Chapter 12: Using Xenopus to discover regulation of GI development and disease. -- Chapter 13: Using Xenopus to discover the function of congenital heart disease genes. -- Chapter 14: Using Xenopus to discover the function of congenital kidney disease genes. -- Chapter 15: Using Xenopus to study genes involved in cancers. -- Section III: Evolution. Chapter 16: Evolution of amphibians. Chapter 17: Evolution of Xenopus communication. Chapter 18: Evolution of the immune system . -- Chapter 19: Evolution of the left-right axis. -- Chapter 20: Evolution of the Xenopus genome.
Xenopus.
0-367-50534-7
Fainsod, Abraham, editor.
Moody, Sally A., editor.
language English
format eBook
author2 Fainsod, Abraham,
Moody, Sally A.,
author_facet Fainsod, Abraham,
Moody, Sally A.,
author2_variant a f af
s a m sa sam
author2_role TeilnehmendeR
TeilnehmendeR
title Xenopus : from basic biology to disease models in the genomic era /
spellingShingle Xenopus : from basic biology to disease models in the genomic era /
Section I. -- 1. A quick history of Xenopus. -- 2. The study of cell division controla and DNA replication in Xenopus egg extracts. -- 3. Maternal gene control of embryogenesis: germ cell determination and germ layer formation. -- 4. Signaling components in dorsal-ventral patterning and the Organizer. -- 5. Signaling pathways in anterior-posterior patterning. -- 6. Wnt signaling in tissue differentiation and morphogenesis. -- 7. Multiple functions of Notch signaling during early embryogenesis. -- 8. The development and evolution of the vertebrate neural crest: Insights from Xenopus. -- 9. The use of Xenopus oocytes to study the biophysics and pharmacological properties of receptors and channels. -- Section II. -- 10. The continuing evolution of the Xenopus genome. -- 11. Dynamics of chromatin remodeling during Xenopus development. -- 12. Gene regulatory networks controlling Xenopus embryogenesis. -- 13. The development of high-resolution proteomic analyses in Xenopus. -- 14. Advances in genome editing tools. -- Section III. -- 15. Formation of the left-right axis: insights from the Xenopus model. -- 16. Discovering the function of congenital heart disease genes. -- 17. Craniofacial development and disorders - contributions of Xenopus. -- 18. Modeling digestive and respiratory system development and disease in Xenopus. -- 19. Functional neurobiology and insights into human disease. -- 20. Leaping towards the understanding of spinal cord regeneration. -- 21. Studying tumor formation and regulation in Xenopus. -- 22. Xenopus: a model to study natural genetic variation and its disease implications. -- 23. Using Xenopus to understand pluripotency and reprogram cells for therapeutic use. Maternal gene control of embryogenesis. -- Chapter 8: Sex determination in Xenopus. -- Section II: Gene Discovery and Disease. -- Chapter 9: Xenopus and the discovery of developmental genes. -- Chapter 10: Systems Biology of Xenopus Embryogenesis. -- Chapter 11: Gene regulatory networks in craniofacial development. -- Chapter 12: Using Xenopus to discover regulation of GI development and disease. -- Chapter 13: Using Xenopus to discover the function of congenital heart disease genes. -- Chapter 14: Using Xenopus to discover the function of congenital kidney disease genes. -- Chapter 15: Using Xenopus to study genes involved in cancers. -- Section III: Evolution. Chapter 16: Evolution of amphibians. Chapter 17: Evolution of Xenopus communication. Chapter 18: Evolution of the immune system . -- Chapter 19: Evolution of the left-right axis. -- Chapter 20: Evolution of the Xenopus genome.
title_sub from basic biology to disease models in the genomic era /
title_full Xenopus : from basic biology to disease models in the genomic era / edited by Abraham Fainsod, Sally A. Moody.
title_fullStr Xenopus : from basic biology to disease models in the genomic era / edited by Abraham Fainsod, Sally A. Moody.
title_full_unstemmed Xenopus : from basic biology to disease models in the genomic era / edited by Abraham Fainsod, Sally A. Moody.
title_auth Xenopus : from basic biology to disease models in the genomic era /
title_alt Xenopus
title_new Xenopus :
title_sort xenopus : from basic biology to disease models in the genomic era /
publisher Taylor & Francis,
publishDate 2022
physical 1 online resource (360 pages)
contents Section I. -- 1. A quick history of Xenopus. -- 2. The study of cell division controla and DNA replication in Xenopus egg extracts. -- 3. Maternal gene control of embryogenesis: germ cell determination and germ layer formation. -- 4. Signaling components in dorsal-ventral patterning and the Organizer. -- 5. Signaling pathways in anterior-posterior patterning. -- 6. Wnt signaling in tissue differentiation and morphogenesis. -- 7. Multiple functions of Notch signaling during early embryogenesis. -- 8. The development and evolution of the vertebrate neural crest: Insights from Xenopus. -- 9. The use of Xenopus oocytes to study the biophysics and pharmacological properties of receptors and channels. -- Section II. -- 10. The continuing evolution of the Xenopus genome. -- 11. Dynamics of chromatin remodeling during Xenopus development. -- 12. Gene regulatory networks controlling Xenopus embryogenesis. -- 13. The development of high-resolution proteomic analyses in Xenopus. -- 14. Advances in genome editing tools. -- Section III. -- 15. Formation of the left-right axis: insights from the Xenopus model. -- 16. Discovering the function of congenital heart disease genes. -- 17. Craniofacial development and disorders - contributions of Xenopus. -- 18. Modeling digestive and respiratory system development and disease in Xenopus. -- 19. Functional neurobiology and insights into human disease. -- 20. Leaping towards the understanding of spinal cord regeneration. -- 21. Studying tumor formation and regulation in Xenopus. -- 22. Xenopus: a model to study natural genetic variation and its disease implications. -- 23. Using Xenopus to understand pluripotency and reprogram cells for therapeutic use. Maternal gene control of embryogenesis. -- Chapter 8: Sex determination in Xenopus. -- Section II: Gene Discovery and Disease. -- Chapter 9: Xenopus and the discovery of developmental genes. -- Chapter 10: Systems Biology of Xenopus Embryogenesis. -- Chapter 11: Gene regulatory networks in craniofacial development. -- Chapter 12: Using Xenopus to discover regulation of GI development and disease. -- Chapter 13: Using Xenopus to discover the function of congenital heart disease genes. -- Chapter 14: Using Xenopus to discover the function of congenital kidney disease genes. -- Chapter 15: Using Xenopus to study genes involved in cancers. -- Section III: Evolution. Chapter 16: Evolution of amphibians. Chapter 17: Evolution of Xenopus communication. Chapter 18: Evolution of the immune system . -- Chapter 19: Evolution of the left-right axis. -- Chapter 20: Evolution of the Xenopus genome.
isbn 0-367-50534-7
callnumber-first Q - Science
callnumber-subject QL - Zoology
callnumber-label QL668
callnumber-sort QL 3668 E265 X466 42022
illustrated Not Illustrated
dewey-hundreds 500 - Science
dewey-tens 590 - Animals (Zoology)
dewey-ones 597 - Cold-blooded vertebrates; fishes
dewey-full 597.8654
dewey-sort 3597.8654
dewey-raw 597.8654
dewey-search 597.8654
work_keys_str_mv AT fainsodabraham xenopusfrombasicbiologytodiseasemodelsinthegenomicera
AT moodysallya xenopusfrombasicbiologytodiseasemodelsinthegenomicera
AT fainsodabraham xenopus
AT moodysallya xenopus
status_str n
ids_txt_mv (CKB)5860000000016677
(NjHacI)995860000000016677
(EXLCZ)995860000000016677
carrierType_str_mv cr
is_hierarchy_title Xenopus : from basic biology to disease models in the genomic era /
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1796653218017574912
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04144nam a2200361 i 4500</leader><controlfield tag="001">993603406904498</controlfield><controlfield tag="005">20230516225439.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">230516s2022 flu ob 001 0 eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5860000000016677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(NjHacI)995860000000016677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995860000000016677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NjHacI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">NjHacl</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QL668.E265</subfield><subfield code="b">.X466 2022</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">597.8654</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Xenopus :</subfield><subfield code="b">from basic biology to disease models in the genomic era /</subfield><subfield code="c">edited by Abraham Fainsod, Sally A. Moody.</subfield></datafield><datafield tag="246" ind1=" " ind2=" "><subfield code="a">Xenopus </subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton :</subfield><subfield code="b">Taylor &amp; Francis,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (360 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on: online resource; title from PDF information screen (JSTOR, viewed May 16, 2023).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Xenopus is unique among the model animals used in the biology. Several books of protocols used Xenopus. Missing is a book taking an historical perspective documenting cell and developmental discoveries and illustrating how Xenopus contributes to the understanding of genes. These topics will be covered in the proposed book"-- Provided by publisher.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Section I. -- 1. A quick history of Xenopus. -- 2. The study of cell division controla and DNA replication in Xenopus egg extracts. -- 3. Maternal gene control of embryogenesis: germ cell determination and germ layer formation. -- 4. Signaling components in dorsal-ventral patterning and the Organizer. -- 5. Signaling pathways in anterior-posterior patterning. -- 6. Wnt signaling in tissue differentiation and morphogenesis. -- 7. Multiple functions of Notch signaling during early embryogenesis. -- 8. The development and evolution of the vertebrate neural crest: Insights from Xenopus. -- 9. The use of Xenopus oocytes to study the biophysics and pharmacological properties of receptors and channels. -- Section II. -- 10. The continuing evolution of the Xenopus genome. -- 11. Dynamics of chromatin remodeling during Xenopus development. -- 12. Gene regulatory networks controlling Xenopus embryogenesis. -- 13. The development of high-resolution proteomic analyses in Xenopus. -- 14. Advances in genome editing tools. -- Section III. -- 15. Formation of the left-right axis: insights from the Xenopus model. -- 16. Discovering the function of congenital heart disease genes. -- 17. Craniofacial development and disorders - contributions of Xenopus. -- 18. Modeling digestive and respiratory system development and disease in Xenopus. -- 19. Functional neurobiology and insights into human disease. -- 20. Leaping towards the understanding of spinal cord regeneration. -- 21. Studying tumor formation and regulation in Xenopus. -- 22. Xenopus: a model to study natural genetic variation and its disease implications. -- 23. Using Xenopus to understand pluripotency and reprogram cells for therapeutic use. Maternal gene control of embryogenesis. -- Chapter 8: Sex determination in Xenopus. -- Section II: Gene Discovery and Disease. -- Chapter 9: Xenopus and the discovery of developmental genes. -- Chapter 10: Systems Biology of Xenopus Embryogenesis. -- Chapter 11: Gene regulatory networks in craniofacial development. -- Chapter 12: Using Xenopus to discover regulation of GI development and disease. -- Chapter 13: Using Xenopus to discover the function of congenital heart disease genes. -- Chapter 14: Using Xenopus to discover the function of congenital kidney disease genes. -- Chapter 15: Using Xenopus to study genes involved in cancers. -- Section III: Evolution. Chapter 16: Evolution of amphibians. Chapter 17: Evolution of Xenopus communication. Chapter 18: Evolution of the immune system . -- Chapter 19: Evolution of the left-right axis. -- Chapter 20: Evolution of the Xenopus genome.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Xenopus.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">0-367-50534-7</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fainsod, Abraham,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moody, Sally A.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-06-09 09:59:43 Europe/Vienna</subfield><subfield code="f">System</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-02 22:03:30 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337752090004498&amp;Force_direct=true</subfield><subfield code="Z">5337752090004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337752090004498</subfield></datafield></record></collection>