Virtual Building Acoustics : : Auralization with Contextual and Interactive Features / / Imran Muhammad.

Modern societies have concerns about growing annoyance due to noise in private dwellings and in commercial worksites. People are exposed to the noise from neighbours, adjacent offices and road traffic which causes disturbance in sleep, physical or mental work impairments. Though ISO (International S...

Full description

Saved in:
Bibliographic Details
VerfasserIn:
Place / Publishing House:Berlin, Germany : : Logos Verlag Berlin GmbH,, 2022.
Year of Publication:2022
Language:English
Physical Description:1 online resource (314 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Abstract
  • List of Symbols
  • List of Figures
  • List of Tables
  • Annexes
  • Chapter 1: Introduction
  • 1.1. Background and Related Work
  • 1.2. Research Objectives
  • 1.3. Content Outline
  • Chapter 2: Fundamentals of Building Acoustics
  • 2.1. Sound Field in Rooms
  • 2.1.1. Direct and Diffuse Field, and Reverberation Distance
  • 2.1.2. Incident Sound Power on a Surface
  • 2.2. Outdoor Sound Fields
  • 2.3. Propagation of Sound in Plates
  • 2.3.1. Longitudinal Waves
  • 2.3.2. Shear Waves
  • 2.3.3. Bending Waves (Flexural Waves)
  • 2.3.4. Free Vibration of Plates
  • 2.3.5. Loss Factor for Bending Waves: (Internal Energy Losses in
  • Materials)
  • 2.3.6. Critical frequency
  • 2.4. Sound Radiation from Building Elements
  • 2.4.1. Radiation Factor (Radiation Efficiency)
  • 2.4.2. Sound Radiation from an Infinite Large Plate
  • 2.4.3. Sound Radiation from a Finite Plate
  • Chapter 3: Airborne Sound Insulation Models
  • 3.1. Airborne Transmission (Sound Reduction Index)
  • 3.2. Direct Transmission
  • 3.2.1. Direct Transmission: Infinite Plate
  • ii
  • 3.2.1.1. Direct Transmission Characterized by Mass Impedance
  • 3.2.1.2. Bending Wave Field: Characterized by Wall Impedance
  • 3.2.1.3. Direct Transmission (Angle Dependent)
  • 3.2.1.4. Direct Transmission (Diffuse Field)
  • 3.2.2. Direct Transmission: Finite Plate
  • 3.2.2.1. Davy's Theory
  • 3.2.2.1.1. Above the Critical Frequency
  • 3.2.2.1.2. Below the Critical Frequency
  • 3.2.2.2. Spatial Windowing Technique
  • 3.2.2.3. ISO Standard Approach
  • 3.3. Flanking Transmission
  • 3.3.1. Apparent Sound Reduction Index
  • 3.3.2. Flanking Sound Reduction Index
  • 3.4. Combining Direct and Flanking Transmissions
  • 3.4.1. Bending wave transmission across plate intersections
  • 3.4.2. Vibration reduction index
  • 3.4.3. Combining Multiple Surfaces
  • Chapter 4: Sound Insulation Filters: Auralization
  • 4.1. Filters for Adjacent Rooms: Simplified Approach
  • 4.2. Filters for Adjacent Rooms: Extended Approach
  • 4.2.1. Sound Source Directivity
  • 4.2.2. Room Impulse Response Synthesis
  • 4.2.3. Sound Field in the Source Room
  • 4.2.4. Incident Sound Energy at Wall Surface (Source Room)
  • 4.2.5. Sound Transmission
  • 4.2.5.1. Direct Sound Transmission
  • 4.2.5.2. Flanking Sound Transmission
  • 4.2.6. Sound Field in the Receiver Room
  • 4.3. Façade Sound Insulation Filters: (Outdoor Scenes)
  • 4.3.1. Outdoor Sound Propagation Model
  • 4.3.1.1. Reflection Model
  • 4.3.2. Filter Design
  • 4.4. Filter Rendering
  • 4.5. Auralization
  • 4.5.1. Source Signals
  • 4.5.2. Interpolation
  • 4.5.3. Binaural Techniques
  • 4.5.4. Signal Presentation for Listening
  • 4.5.5. Headphone Equalization
  • iii
  • Chapter 5: Implementation and Verification
  • 5.1. Built Environments (Case Studies)
  • 5.2. Evaluation for Adjacent Rooms (Indoor Case)
  • 5.2.1. Verification of Level Difference ( )
  • 5.2.2. Comparison with Measurements
  • 5.2.2.1. Level Differences
  • 5.2.3. Visualization of Sound field
  • 5.3. Verification of Façade Sound Insulation
  • 5.3.1. Verification of Level Difference ( )
  • 5.3.2. Visualization of Sound Fields (Outdoor Excitation)
  • 5.4. Extension to Urban Environments (Outdoor)
  • 5.4.1. Verification of Level Difference ( )
  • Chapter 6: Auditory-Visual Virtual Reality Framework
  • 6.1. Virtual Building Acoustics (VBA) Framework
  • 6.1.1. Architectural Models
  • 6.1.2. Virtual Reality Visual Environments
  • 6.2. Implementation of VBA
  • 6.2.1. Room Acoustics Package
  • 6.2.2. Building Acoustics Package
  • 6.2.3. Outdoor Sound Propagation Package
  • 6.2.4. Geometry Handling Package
  • 6.2.5. Transfer Function/Audio Rendering Package
  • 6.3. Evaluation of Real-time Performance (VBA)
  • 6.3.1. Filter Construction (Initialization)
  • 6.3.2. Real-time Filter Rendering and Convolution
  • 6.4. Audio-Visual Scenes
  • Chapter 7: Perceptual Studies
  • 7.1. Cognitive Performance during Background Noise Effects
  • 7.1.1. Building Acoustics Model (Adjacent Office)
  • 7.1.2. Virtual Reality Environment (VR-Scene)
  • 7.1.3. Evaluation of VR environment: Cognitive performance and
  • subjective ratings
  • 7.1.3.1. Methods
  • 7.1.3.2. Results
  • 7.1.3.2.1. Performance Measurements
  • 7.1.3.2.2. Subjective Ratings
  • 7.1.4. Summary
  • 7.2. Perception of Passing-by Outdoor Sources
  • iv
  • 7.2.1. Building Acoustical Model (Façade Sound Insulation)
  • 7.2.2. Virtual Reality Environment (VR-Scene)
  • 7.2.3. Evaluation of VR environment: Perceptual Localization of
  • Moving Outdoor Sources
  • 7.2.3.1. Methods
  • 7.2.3.2. Results
  • Chapter 8: Summary
  • Chapter 9: Outlook
  • Annexes
  • Bibliography
  • Curriculum Vitae.