Virtual Building Acoustics : : Auralization with Contextual and Interactive Features / / Imran Muhammad.

Modern societies have concerns about growing annoyance due to noise in private dwellings and in commercial worksites. People are exposed to the noise from neighbours, adjacent offices and road traffic which causes disturbance in sleep, physical or mental work impairments. Though ISO (International S...

Full description

Saved in:
Bibliographic Details
VerfasserIn:
Place / Publishing House:Berlin, Germany : : Logos Verlag Berlin GmbH,, 2022.
Year of Publication:2022
Language:English
Physical Description:1 online resource (314 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993581039104498
ctrlnum (CKB)5580000000509366
(NjHacI)995580000000509366
(EXLCZ)995580000000509366
collection bib_alma
record_format marc
spelling Muhammad, Imran, author. http://orcid.org/0000-0001-9808-3921 orcid
Virtual Building Acoustics : Auralization with Contextual and Interactive Features / Imran Muhammad.
Virtual Building Acoustics
Berlin, Germany : Logos Verlag Berlin GmbH, 2022.
1 online resource (314 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on publisher supplied metadata and other sources.
Modern societies have concerns about growing annoyance due to noise in private dwellings and in commercial worksites. People are exposed to the noise from neighbours, adjacent offices and road traffic which causes disturbance in sleep, physical or mental work impairments. Though ISO (International Standards Organization) provides sound insulation guidelines to protect citizens from the noise exposures, these guidelines do not provide an optimal acoustic satisfaction especially for specific sounds, for example a conversation varying in intelligibility. This work addresses the challenges in traditional sound insulation models, filters and auralization techniques, and establishes an interface between psychoacoustic research and building acoustics in audio-visual VR environments. Improvements are made in sound insulation prediction methods, filters construction and rendering techniques for sound insulation auralization. The virtual building acoustic framework (VBA) is developed toward real-time interactive audio-visual technology, to be able to introduce more realism and, hence, contextual features into psychoacoustic experiments. Listening experiments close to real-life situations are carried which showed that the VBA can be used as an alternate to design test paradigms which help to better analyse and interpret the noise impacts in built-up environments situations depending on the actual activities.
Abstract -- List of Symbols -- List of Figures -- List of Tables -- Annexes -- Chapter 1: Introduction -- 1.1. Background and Related Work -- 1.2. Research Objectives -- 1.3. Content Outline -- Chapter 2: Fundamentals of Building Acoustics -- 2.1. Sound Field in Rooms -- 2.1.1. Direct and Diffuse Field, and Reverberation Distance -- 2.1.2. Incident Sound Power on a Surface -- 2.2. Outdoor Sound Fields -- 2.3. Propagation of Sound in Plates -- 2.3.1. Longitudinal Waves -- 2.3.2. Shear Waves -- 2.3.3. Bending Waves (Flexural Waves) -- 2.3.4. Free Vibration of Plates -- 2.3.5. Loss Factor for Bending Waves: (Internal Energy Losses in -- Materials) -- 2.3.6. Critical frequency -- 2.4. Sound Radiation from Building Elements -- 2.4.1. Radiation Factor (Radiation Efficiency) -- 2.4.2. Sound Radiation from an Infinite Large Plate -- 2.4.3. Sound Radiation from a Finite Plate -- Chapter 3: Airborne Sound Insulation Models -- 3.1. Airborne Transmission (Sound Reduction Index) -- 3.2. Direct Transmission -- 3.2.1. Direct Transmission: Infinite Plate -- ii -- 3.2.1.1. Direct Transmission Characterized by Mass Impedance -- 3.2.1.2. Bending Wave Field: Characterized by Wall Impedance -- 3.2.1.3. Direct Transmission (Angle Dependent) -- 3.2.1.4. Direct Transmission (Diffuse Field) -- 3.2.2. Direct Transmission: Finite Plate -- 3.2.2.1. Davy's Theory -- 3.2.2.1.1. Above the Critical Frequency -- 3.2.2.1.2. Below the Critical Frequency -- 3.2.2.2. Spatial Windowing Technique -- 3.2.2.3. ISO Standard Approach -- 3.3. Flanking Transmission -- 3.3.1. Apparent Sound Reduction Index -- 3.3.2. Flanking Sound Reduction Index -- 3.4. Combining Direct and Flanking Transmissions -- 3.4.1. Bending wave transmission across plate intersections -- 3.4.2. Vibration reduction index -- 3.4.3. Combining Multiple Surfaces -- Chapter 4: Sound Insulation Filters: Auralization -- 4.1. Filters for Adjacent Rooms: Simplified Approach -- 4.2. Filters for Adjacent Rooms: Extended Approach -- 4.2.1. Sound Source Directivity -- 4.2.2. Room Impulse Response Synthesis -- 4.2.3. Sound Field in the Source Room -- 4.2.4. Incident Sound Energy at Wall Surface (Source Room) -- 4.2.5. Sound Transmission -- 4.2.5.1. Direct Sound Transmission -- 4.2.5.2. Flanking Sound Transmission -- 4.2.6. Sound Field in the Receiver Room -- 4.3. Façade Sound Insulation Filters: (Outdoor Scenes) -- 4.3.1. Outdoor Sound Propagation Model -- 4.3.1.1. Reflection Model -- 4.3.2. Filter Design -- 4.4. Filter Rendering -- 4.5. Auralization -- 4.5.1. Source Signals -- 4.5.2. Interpolation -- 4.5.3. Binaural Techniques -- 4.5.4. Signal Presentation for Listening -- 4.5.5. Headphone Equalization -- iii -- Chapter 5: Implementation and Verification -- 5.1. Built Environments (Case Studies) -- 5.2. Evaluation for Adjacent Rooms (Indoor Case) -- 5.2.1. Verification of Level Difference ( ) -- 5.2.2. Comparison with Measurements -- 5.2.2.1. Level Differences -- 5.2.3. Visualization of Sound field -- 5.3. Verification of Façade Sound Insulation -- 5.3.1. Verification of Level Difference ( ) -- 5.3.2. Visualization of Sound Fields (Outdoor Excitation) -- 5.4. Extension to Urban Environments (Outdoor) -- 5.4.1. Verification of Level Difference ( ) -- Chapter 6: Auditory-Visual Virtual Reality Framework -- 6.1. Virtual Building Acoustics (VBA) Framework -- 6.1.1. Architectural Models -- 6.1.2. Virtual Reality Visual Environments -- 6.2. Implementation of VBA -- 6.2.1. Room Acoustics Package -- 6.2.2. Building Acoustics Package -- 6.2.3. Outdoor Sound Propagation Package -- 6.2.4. Geometry Handling Package -- 6.2.5. Transfer Function/Audio Rendering Package -- 6.3. Evaluation of Real-time Performance (VBA) -- 6.3.1. Filter Construction (Initialization) -- 6.3.2. Real-time Filter Rendering and Convolution -- 6.4. Audio-Visual Scenes -- Chapter 7: Perceptual Studies -- 7.1. Cognitive Performance during Background Noise Effects -- 7.1.1. Building Acoustics Model (Adjacent Office) -- 7.1.2. Virtual Reality Environment (VR-Scene) -- 7.1.3. Evaluation of VR environment: Cognitive performance and -- subjective ratings -- 7.1.3.1. Methods -- 7.1.3.2. Results -- 7.1.3.2.1. Performance Measurements -- 7.1.3.2.2. Subjective Ratings -- 7.1.4. Summary -- 7.2. Perception of Passing-by Outdoor Sources -- iv -- 7.2.1. Building Acoustical Model (Façade Sound Insulation) -- 7.2.2. Virtual Reality Environment (VR-Scene) -- 7.2.3. Evaluation of VR environment: Perceptual Localization of -- Moving Outdoor Sources -- 7.2.3.1. Methods -- 7.2.3.2. Results -- Chapter 8: Summary -- Chapter 9: Outlook -- Annexes -- Bibliography -- Curriculum Vitae.
Hearing.
Psychoacoustics
Soundproofing
Noise Psychological aspects.
Virtual reality.
Virtual reality in architecture.
Sound.
virtual building acoustics
psychoacoustic experiments
acoustics
language English
format eBook
author Muhammad, Imran,
spellingShingle Muhammad, Imran,
Virtual Building Acoustics : Auralization with Contextual and Interactive Features /
Abstract -- List of Symbols -- List of Figures -- List of Tables -- Annexes -- Chapter 1: Introduction -- 1.1. Background and Related Work -- 1.2. Research Objectives -- 1.3. Content Outline -- Chapter 2: Fundamentals of Building Acoustics -- 2.1. Sound Field in Rooms -- 2.1.1. Direct and Diffuse Field, and Reverberation Distance -- 2.1.2. Incident Sound Power on a Surface -- 2.2. Outdoor Sound Fields -- 2.3. Propagation of Sound in Plates -- 2.3.1. Longitudinal Waves -- 2.3.2. Shear Waves -- 2.3.3. Bending Waves (Flexural Waves) -- 2.3.4. Free Vibration of Plates -- 2.3.5. Loss Factor for Bending Waves: (Internal Energy Losses in -- Materials) -- 2.3.6. Critical frequency -- 2.4. Sound Radiation from Building Elements -- 2.4.1. Radiation Factor (Radiation Efficiency) -- 2.4.2. Sound Radiation from an Infinite Large Plate -- 2.4.3. Sound Radiation from a Finite Plate -- Chapter 3: Airborne Sound Insulation Models -- 3.1. Airborne Transmission (Sound Reduction Index) -- 3.2. Direct Transmission -- 3.2.1. Direct Transmission: Infinite Plate -- ii -- 3.2.1.1. Direct Transmission Characterized by Mass Impedance -- 3.2.1.2. Bending Wave Field: Characterized by Wall Impedance -- 3.2.1.3. Direct Transmission (Angle Dependent) -- 3.2.1.4. Direct Transmission (Diffuse Field) -- 3.2.2. Direct Transmission: Finite Plate -- 3.2.2.1. Davy's Theory -- 3.2.2.1.1. Above the Critical Frequency -- 3.2.2.1.2. Below the Critical Frequency -- 3.2.2.2. Spatial Windowing Technique -- 3.2.2.3. ISO Standard Approach -- 3.3. Flanking Transmission -- 3.3.1. Apparent Sound Reduction Index -- 3.3.2. Flanking Sound Reduction Index -- 3.4. Combining Direct and Flanking Transmissions -- 3.4.1. Bending wave transmission across plate intersections -- 3.4.2. Vibration reduction index -- 3.4.3. Combining Multiple Surfaces -- Chapter 4: Sound Insulation Filters: Auralization -- 4.1. Filters for Adjacent Rooms: Simplified Approach -- 4.2. Filters for Adjacent Rooms: Extended Approach -- 4.2.1. Sound Source Directivity -- 4.2.2. Room Impulse Response Synthesis -- 4.2.3. Sound Field in the Source Room -- 4.2.4. Incident Sound Energy at Wall Surface (Source Room) -- 4.2.5. Sound Transmission -- 4.2.5.1. Direct Sound Transmission -- 4.2.5.2. Flanking Sound Transmission -- 4.2.6. Sound Field in the Receiver Room -- 4.3. Façade Sound Insulation Filters: (Outdoor Scenes) -- 4.3.1. Outdoor Sound Propagation Model -- 4.3.1.1. Reflection Model -- 4.3.2. Filter Design -- 4.4. Filter Rendering -- 4.5. Auralization -- 4.5.1. Source Signals -- 4.5.2. Interpolation -- 4.5.3. Binaural Techniques -- 4.5.4. Signal Presentation for Listening -- 4.5.5. Headphone Equalization -- iii -- Chapter 5: Implementation and Verification -- 5.1. Built Environments (Case Studies) -- 5.2. Evaluation for Adjacent Rooms (Indoor Case) -- 5.2.1. Verification of Level Difference ( ) -- 5.2.2. Comparison with Measurements -- 5.2.2.1. Level Differences -- 5.2.3. Visualization of Sound field -- 5.3. Verification of Façade Sound Insulation -- 5.3.1. Verification of Level Difference ( ) -- 5.3.2. Visualization of Sound Fields (Outdoor Excitation) -- 5.4. Extension to Urban Environments (Outdoor) -- 5.4.1. Verification of Level Difference ( ) -- Chapter 6: Auditory-Visual Virtual Reality Framework -- 6.1. Virtual Building Acoustics (VBA) Framework -- 6.1.1. Architectural Models -- 6.1.2. Virtual Reality Visual Environments -- 6.2. Implementation of VBA -- 6.2.1. Room Acoustics Package -- 6.2.2. Building Acoustics Package -- 6.2.3. Outdoor Sound Propagation Package -- 6.2.4. Geometry Handling Package -- 6.2.5. Transfer Function/Audio Rendering Package -- 6.3. Evaluation of Real-time Performance (VBA) -- 6.3.1. Filter Construction (Initialization) -- 6.3.2. Real-time Filter Rendering and Convolution -- 6.4. Audio-Visual Scenes -- Chapter 7: Perceptual Studies -- 7.1. Cognitive Performance during Background Noise Effects -- 7.1.1. Building Acoustics Model (Adjacent Office) -- 7.1.2. Virtual Reality Environment (VR-Scene) -- 7.1.3. Evaluation of VR environment: Cognitive performance and -- subjective ratings -- 7.1.3.1. Methods -- 7.1.3.2. Results -- 7.1.3.2.1. Performance Measurements -- 7.1.3.2.2. Subjective Ratings -- 7.1.4. Summary -- 7.2. Perception of Passing-by Outdoor Sources -- iv -- 7.2.1. Building Acoustical Model (Façade Sound Insulation) -- 7.2.2. Virtual Reality Environment (VR-Scene) -- 7.2.3. Evaluation of VR environment: Perceptual Localization of -- Moving Outdoor Sources -- 7.2.3.1. Methods -- 7.2.3.2. Results -- Chapter 8: Summary -- Chapter 9: Outlook -- Annexes -- Bibliography -- Curriculum Vitae.
author_facet Muhammad, Imran,
author_variant i m im
author_role VerfasserIn
author_sort Muhammad, Imran,
title Virtual Building Acoustics : Auralization with Contextual and Interactive Features /
title_sub Auralization with Contextual and Interactive Features /
title_full Virtual Building Acoustics : Auralization with Contextual and Interactive Features / Imran Muhammad.
title_fullStr Virtual Building Acoustics : Auralization with Contextual and Interactive Features / Imran Muhammad.
title_full_unstemmed Virtual Building Acoustics : Auralization with Contextual and Interactive Features / Imran Muhammad.
title_auth Virtual Building Acoustics : Auralization with Contextual and Interactive Features /
title_alt Virtual Building Acoustics
title_new Virtual Building Acoustics :
title_sort virtual building acoustics : auralization with contextual and interactive features /
publisher Logos Verlag Berlin GmbH,
publishDate 2022
physical 1 online resource (314 pages)
contents Abstract -- List of Symbols -- List of Figures -- List of Tables -- Annexes -- Chapter 1: Introduction -- 1.1. Background and Related Work -- 1.2. Research Objectives -- 1.3. Content Outline -- Chapter 2: Fundamentals of Building Acoustics -- 2.1. Sound Field in Rooms -- 2.1.1. Direct and Diffuse Field, and Reverberation Distance -- 2.1.2. Incident Sound Power on a Surface -- 2.2. Outdoor Sound Fields -- 2.3. Propagation of Sound in Plates -- 2.3.1. Longitudinal Waves -- 2.3.2. Shear Waves -- 2.3.3. Bending Waves (Flexural Waves) -- 2.3.4. Free Vibration of Plates -- 2.3.5. Loss Factor for Bending Waves: (Internal Energy Losses in -- Materials) -- 2.3.6. Critical frequency -- 2.4. Sound Radiation from Building Elements -- 2.4.1. Radiation Factor (Radiation Efficiency) -- 2.4.2. Sound Radiation from an Infinite Large Plate -- 2.4.3. Sound Radiation from a Finite Plate -- Chapter 3: Airborne Sound Insulation Models -- 3.1. Airborne Transmission (Sound Reduction Index) -- 3.2. Direct Transmission -- 3.2.1. Direct Transmission: Infinite Plate -- ii -- 3.2.1.1. Direct Transmission Characterized by Mass Impedance -- 3.2.1.2. Bending Wave Field: Characterized by Wall Impedance -- 3.2.1.3. Direct Transmission (Angle Dependent) -- 3.2.1.4. Direct Transmission (Diffuse Field) -- 3.2.2. Direct Transmission: Finite Plate -- 3.2.2.1. Davy's Theory -- 3.2.2.1.1. Above the Critical Frequency -- 3.2.2.1.2. Below the Critical Frequency -- 3.2.2.2. Spatial Windowing Technique -- 3.2.2.3. ISO Standard Approach -- 3.3. Flanking Transmission -- 3.3.1. Apparent Sound Reduction Index -- 3.3.2. Flanking Sound Reduction Index -- 3.4. Combining Direct and Flanking Transmissions -- 3.4.1. Bending wave transmission across plate intersections -- 3.4.2. Vibration reduction index -- 3.4.3. Combining Multiple Surfaces -- Chapter 4: Sound Insulation Filters: Auralization -- 4.1. Filters for Adjacent Rooms: Simplified Approach -- 4.2. Filters for Adjacent Rooms: Extended Approach -- 4.2.1. Sound Source Directivity -- 4.2.2. Room Impulse Response Synthesis -- 4.2.3. Sound Field in the Source Room -- 4.2.4. Incident Sound Energy at Wall Surface (Source Room) -- 4.2.5. Sound Transmission -- 4.2.5.1. Direct Sound Transmission -- 4.2.5.2. Flanking Sound Transmission -- 4.2.6. Sound Field in the Receiver Room -- 4.3. Façade Sound Insulation Filters: (Outdoor Scenes) -- 4.3.1. Outdoor Sound Propagation Model -- 4.3.1.1. Reflection Model -- 4.3.2. Filter Design -- 4.4. Filter Rendering -- 4.5. Auralization -- 4.5.1. Source Signals -- 4.5.2. Interpolation -- 4.5.3. Binaural Techniques -- 4.5.4. Signal Presentation for Listening -- 4.5.5. Headphone Equalization -- iii -- Chapter 5: Implementation and Verification -- 5.1. Built Environments (Case Studies) -- 5.2. Evaluation for Adjacent Rooms (Indoor Case) -- 5.2.1. Verification of Level Difference ( ) -- 5.2.2. Comparison with Measurements -- 5.2.2.1. Level Differences -- 5.2.3. Visualization of Sound field -- 5.3. Verification of Façade Sound Insulation -- 5.3.1. Verification of Level Difference ( ) -- 5.3.2. Visualization of Sound Fields (Outdoor Excitation) -- 5.4. Extension to Urban Environments (Outdoor) -- 5.4.1. Verification of Level Difference ( ) -- Chapter 6: Auditory-Visual Virtual Reality Framework -- 6.1. Virtual Building Acoustics (VBA) Framework -- 6.1.1. Architectural Models -- 6.1.2. Virtual Reality Visual Environments -- 6.2. Implementation of VBA -- 6.2.1. Room Acoustics Package -- 6.2.2. Building Acoustics Package -- 6.2.3. Outdoor Sound Propagation Package -- 6.2.4. Geometry Handling Package -- 6.2.5. Transfer Function/Audio Rendering Package -- 6.3. Evaluation of Real-time Performance (VBA) -- 6.3.1. Filter Construction (Initialization) -- 6.3.2. Real-time Filter Rendering and Convolution -- 6.4. Audio-Visual Scenes -- Chapter 7: Perceptual Studies -- 7.1. Cognitive Performance during Background Noise Effects -- 7.1.1. Building Acoustics Model (Adjacent Office) -- 7.1.2. Virtual Reality Environment (VR-Scene) -- 7.1.3. Evaluation of VR environment: Cognitive performance and -- subjective ratings -- 7.1.3.1. Methods -- 7.1.3.2. Results -- 7.1.3.2.1. Performance Measurements -- 7.1.3.2.2. Subjective Ratings -- 7.1.4. Summary -- 7.2. Perception of Passing-by Outdoor Sources -- iv -- 7.2.1. Building Acoustical Model (Façade Sound Insulation) -- 7.2.2. Virtual Reality Environment (VR-Scene) -- 7.2.3. Evaluation of VR environment: Perceptual Localization of -- Moving Outdoor Sources -- 7.2.3.1. Methods -- 7.2.3.2. Results -- Chapter 8: Summary -- Chapter 9: Outlook -- Annexes -- Bibliography -- Curriculum Vitae.
isbn 3-8325-5601-X
callnumber-first B - Philosophy, Psychology, Religion
callnumber-subject BD - Speculative Philosophy
callnumber-label BD331
callnumber-sort BD 3331 M843 42022
illustrated Not Illustrated
dewey-hundreds 000 - Computer science, information & general works
dewey-tens 000 - Computer science, knowledge & systems
dewey-ones 006 - Special computer methods
dewey-full 006.8
dewey-sort 16.8
dewey-raw 006.8
dewey-search 006.8
work_keys_str_mv AT muhammadimran virtualbuildingacousticsauralizationwithcontextualandinteractivefeatures
AT muhammadimran virtualbuildingacoustics
status_str n
ids_txt_mv (CKB)5580000000509366
(NjHacI)995580000000509366
(EXLCZ)995580000000509366
carrierType_str_mv cr
is_hierarchy_title Virtual Building Acoustics : Auralization with Contextual and Interactive Features /
_version_ 1796652748526059520
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07460nam a2200421 i 4500</leader><controlfield tag="001">993581039104498</controlfield><controlfield tag="005">20230417004313.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr#|||||||||||</controlfield><controlfield tag="008">230324s2022 gw o 000 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-8325-5601-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5580000000509366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(NjHacI)995580000000509366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995580000000509366</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NjHacI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">NjHacl</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">BD331</subfield><subfield code="b">.M843 2022</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">006.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muhammad, Imran,</subfield><subfield code="e">author.</subfield><subfield code="1">http://orcid.org/0000-0001-9808-3921</subfield><subfield code="2">orcid</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Virtual Building Acoustics :</subfield><subfield code="b">Auralization with Contextual and Interactive Features /</subfield><subfield code="c">Imran Muhammad.</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Virtual Building Acoustics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Germany :</subfield><subfield code="b">Logos Verlag Berlin GmbH,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (314 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modern societies have concerns about growing annoyance due to noise in private dwellings and in commercial worksites. People are exposed to the noise from neighbours, adjacent offices and road traffic which causes disturbance in sleep, physical or mental work impairments. Though ISO (International Standards Organization) provides sound insulation guidelines to protect citizens from the noise exposures, these guidelines do not provide an optimal acoustic satisfaction especially for specific sounds, for example a conversation varying in intelligibility. This work addresses the challenges in traditional sound insulation models, filters and auralization techniques, and establishes an interface between psychoacoustic research and building acoustics in audio-visual VR environments. Improvements are made in sound insulation prediction methods, filters construction and rendering techniques for sound insulation auralization. The virtual building acoustic framework (VBA) is developed toward real-time interactive audio-visual technology, to be able to introduce more realism and, hence, contextual features into psychoacoustic experiments. Listening experiments close to real-life situations are carried which showed that the VBA can be used as an alternate to design test paradigms which help to better analyse and interpret the noise impacts in built-up environments situations depending on the actual activities.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Abstract -- List of Symbols -- List of Figures -- List of Tables -- Annexes -- Chapter 1: Introduction -- 1.1. Background and Related Work -- 1.2. Research Objectives -- 1.3. Content Outline -- Chapter 2: Fundamentals of Building Acoustics -- 2.1. Sound Field in Rooms -- 2.1.1. Direct and Diffuse Field, and Reverberation Distance -- 2.1.2. Incident Sound Power on a Surface -- 2.2. Outdoor Sound Fields -- 2.3. Propagation of Sound in Plates -- 2.3.1. Longitudinal Waves -- 2.3.2. Shear Waves -- 2.3.3. Bending Waves (Flexural Waves) -- 2.3.4. Free Vibration of Plates -- 2.3.5. Loss Factor for Bending Waves: (Internal Energy Losses in -- Materials) -- 2.3.6. Critical frequency -- 2.4. Sound Radiation from Building Elements -- 2.4.1. Radiation Factor (Radiation Efficiency) -- 2.4.2. Sound Radiation from an Infinite Large Plate -- 2.4.3. Sound Radiation from a Finite Plate -- Chapter 3: Airborne Sound Insulation Models -- 3.1. Airborne Transmission (Sound Reduction Index) -- 3.2. Direct Transmission -- 3.2.1. Direct Transmission: Infinite Plate -- ii -- 3.2.1.1. Direct Transmission Characterized by Mass Impedance -- 3.2.1.2. Bending Wave Field: Characterized by Wall Impedance -- 3.2.1.3. Direct Transmission (Angle Dependent) -- 3.2.1.4. Direct Transmission (Diffuse Field) -- 3.2.2. Direct Transmission: Finite Plate -- 3.2.2.1. Davy's Theory -- 3.2.2.1.1. Above the Critical Frequency -- 3.2.2.1.2. Below the Critical Frequency -- 3.2.2.2. Spatial Windowing Technique -- 3.2.2.3. ISO Standard Approach -- 3.3. Flanking Transmission -- 3.3.1. Apparent Sound Reduction Index -- 3.3.2. Flanking Sound Reduction Index -- 3.4. Combining Direct and Flanking Transmissions -- 3.4.1. Bending wave transmission across plate intersections -- 3.4.2. Vibration reduction index -- 3.4.3. Combining Multiple Surfaces -- Chapter 4: Sound Insulation Filters: Auralization -- 4.1. Filters for Adjacent Rooms: Simplified Approach -- 4.2. Filters for Adjacent Rooms: Extended Approach -- 4.2.1. Sound Source Directivity -- 4.2.2. Room Impulse Response Synthesis -- 4.2.3. Sound Field in the Source Room -- 4.2.4. Incident Sound Energy at Wall Surface (Source Room) -- 4.2.5. Sound Transmission -- 4.2.5.1. Direct Sound Transmission -- 4.2.5.2. Flanking Sound Transmission -- 4.2.6. Sound Field in the Receiver Room -- 4.3. Façade Sound Insulation Filters: (Outdoor Scenes) -- 4.3.1. Outdoor Sound Propagation Model -- 4.3.1.1. Reflection Model -- 4.3.2. Filter Design -- 4.4. Filter Rendering -- 4.5. Auralization -- 4.5.1. Source Signals -- 4.5.2. Interpolation -- 4.5.3. Binaural Techniques -- 4.5.4. Signal Presentation for Listening -- 4.5.5. Headphone Equalization -- iii -- Chapter 5: Implementation and Verification -- 5.1. Built Environments (Case Studies) -- 5.2. Evaluation for Adjacent Rooms (Indoor Case) -- 5.2.1. Verification of Level Difference ( ) -- 5.2.2. Comparison with Measurements -- 5.2.2.1. Level Differences -- 5.2.3. Visualization of Sound field -- 5.3. Verification of Façade Sound Insulation -- 5.3.1. Verification of Level Difference ( ) -- 5.3.2. Visualization of Sound Fields (Outdoor Excitation) -- 5.4. Extension to Urban Environments (Outdoor) -- 5.4.1. Verification of Level Difference ( ) -- Chapter 6: Auditory-Visual Virtual Reality Framework -- 6.1. Virtual Building Acoustics (VBA) Framework -- 6.1.1. Architectural Models -- 6.1.2. Virtual Reality Visual Environments -- 6.2. Implementation of VBA -- 6.2.1. Room Acoustics Package -- 6.2.2. Building Acoustics Package -- 6.2.3. Outdoor Sound Propagation Package -- 6.2.4. Geometry Handling Package -- 6.2.5. Transfer Function/Audio Rendering Package -- 6.3. Evaluation of Real-time Performance (VBA) -- 6.3.1. Filter Construction (Initialization) -- 6.3.2. Real-time Filter Rendering and Convolution -- 6.4. Audio-Visual Scenes -- Chapter 7: Perceptual Studies -- 7.1. Cognitive Performance during Background Noise Effects -- 7.1.1. Building Acoustics Model (Adjacent Office) -- 7.1.2. Virtual Reality Environment (VR-Scene) -- 7.1.3. Evaluation of VR environment: Cognitive performance and -- subjective ratings -- 7.1.3.1. Methods -- 7.1.3.2. Results -- 7.1.3.2.1. Performance Measurements -- 7.1.3.2.2. Subjective Ratings -- 7.1.4. Summary -- 7.2. Perception of Passing-by Outdoor Sources -- iv -- 7.2.1. Building Acoustical Model (Façade Sound Insulation) -- 7.2.2. Virtual Reality Environment (VR-Scene) -- 7.2.3. Evaluation of VR environment: Perceptual Localization of -- Moving Outdoor Sources -- 7.2.3.1. Methods -- 7.2.3.2. Results -- Chapter 8: Summary -- Chapter 9: Outlook -- Annexes -- Bibliography -- Curriculum Vitae.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hearing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Psychoacoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Soundproofing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Noise</subfield><subfield code="x">Psychological aspects.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Virtual reality.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Virtual reality in architecture.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sound.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">virtual building acoustics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">psychoacoustic experiments</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">acoustics</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-04-18 21:44:45 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2023-02-11 21:29:23 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5343011020004498&amp;Force_direct=true</subfield><subfield code="Z">5343011020004498</subfield><subfield code="b">Available</subfield><subfield code="8">5343011020004498</subfield></datafield></record></collection>