Integrated wastewater management for health and valorization : : a design manual for resource challenged cities / / Stewart Oakley.

Adequate wastewater treatment in low to medium income cities worldwide has largely been a failure despite decades of funding. The still dominant end-of-pipe paradigm of treatment for surface water discharge, focusing principally on removal of organic matter, has not addressed the well-published prob...

Full description

Saved in:
Bibliographic Details
VerfasserIn:
Place / Publishing House:London, England : : IWA Publishing,, [2022]
©2022
Year of Publication:2022
Edition:1st ed.
Language:English
Physical Description:1 online resource (370 pages)
Notes:Includes index.
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993568677004498
ctrlnum (CKB)5450000000454481
(NjHacI)995450000000454481
(MiAaPQ)EBC30201320
(Au-PeEL)EBL30201320
(ScCtBLL)550d3a89-1f36-4975-8fba-cc881e933ad2
(EXLCZ)995450000000454481
collection bib_alma
record_format marc
spelling Oakley, Stewart, author.
Integrated wastewater management for health and valorization : a design manual for resource challenged cities / Stewart Oakley.
1st ed.
London, England : IWA Publishing, [2022]
©2022
1 online resource (370 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Adequate wastewater treatment in low to medium income cities worldwide has largely been a failure despite decades of funding. The still dominant end-of-pipe paradigm of treatment for surface water discharge, focusing principally on removal of organic matter, has not addressed the well-published problems of pathogen and nutrient release with continued contamination of surface waters. This book incorporates the new paradigm of integrated wastewater management for valorization without surface water discharge using waste stabilization pond systems and wastewater reservoirs. In this paradigm the purpose of treatment is to protect health by reducing pathogens to produce an effluent that is valorized for its fertilizer and water value for agriculture and aquaculture. Methane production as a sustainable energy source is also considered for those applications where it is appropriate. Emphasis is on sustainable engineering solutions for low to medium income cities worldwide. Chapters present the theory of design, followed by design procedures, example design problems, and case study examples with data, diagrams and photos of operating systems. Excel spreadsheets and the FAO program CLIMWAT/CROPWAT are included in examples throughout. Sections on engineering practice include technical training, operation and maintenance requirements, construction and sustainability. The book incorporates design and operating data and case studies from Africa, Australia, Latin America, Europe, New Zealand, and the US, including studies that have been published in French, Portuguese, and Spanish.
Includes index.
Cover -- Contents -- Preface -- Chapter 1: Integrated wastewater management for reuse in agriculture -- 1.1 INTRODUCTION -- 1.1.1 Wastewater and agriculture -- 1.1.1.1 Increasing water scarcity and stress -- 1.1.1.2 Population growth -- 1.1.1.3 Wastewater as a resource -- 1.1.2 The end-of-pipe paradigm for wastewater discharge -- 1.1.2.1 Global wastewater production, treatment, reuse, and discharge -- 1.1.2.2 Water resources and wastewater discharges -- 1.1.2.3 Global discharge of nitrogen and phosphorus -- 1.1.2.4 Energy use in mechanized wastewater treatment -- 1.1.3 The integrated wastewater management paradigm -- 1.1.3.1 Wastewater as a water resource -- 1.1.3.2 Semi-arid climates: irrigation water requirement 1500 mm/yr -- 1.1.3.3 Valorization of nutrients (N and P) in wastewater -- 1.1.3.4 Value as fertilizer, 2021 prices -- 1.1.3.5 Energy saved from fertilizer production -- 1.1.3.6 CO2,equiv emissions saved from not using synthetic fertilizers -- 1.1.3.7 Valorization of energy from anaerobic processes -- 1.2 WASTEWATER REUSE IN AGRICULTURE AND DEVELOPMENT OF END-OF-PIPE PARADIGM -- 1.2.1 Historical use of wastewater in agriculture: 3000 BCE-1915 CE -- 1.2.2 Decline of wastewater reuse with end-of-pipe paradigm: 1915-1990 -- 1.2.3 End-of-pipe paradigm with resource recovery in EU and North America: 2000-2020 -- 1.2.3.1 Secondary treatment with tertiary processes and resource recovery -- 1.2.3.2 Wastewater reuse in agriculture in the EU and the US -- 1.2.4 Wastewater treatment and resource recovery in China: 1980-2020 -- 1.2.4.1 Wastewater treatment and discharge of excess nitrogen to surface waters -- 1.2.4.2 Resource recovery in a Chinese 'concept wastewater treatment plant' -- 1.2.5 End-of-pipe paradigm in resource-limited cities/peri-urban areas: 2000-2020 -- 1.2.5.1 Indirect reuse of wastewater in agriculture.
1.2.5.2 Direct reuse of inadequately treated wastewater in agriculture -- 1.2.5.3 Direct reuse in agriculture with effluent wastewater meeting WHO guidelines -- 1.3 WASTEWATER TREATMENT FOR AGRICULTURAL REUSE IN RESOURCE-LIMITED REGIONS -- 1.3.1 Urban population growth -- 1.3.2 Coverage of wastewater treatment in the EU and North America -- 1.3.3 Coverage of wastewater treatment in resource-limited SDG regions -- 1.3.4 Effectiveness of wastewater treatment in resource-challenged urban areas -- 1.3.4.1 Bolivia: waste stabilization ponds and wastewater reuse -- 1.3.4.2 Honduras: pathogen reduction in waste stabilization ponds -- 1.3.4.3 Ouagadougou, Burkina Faso: protozoan cyst and helminth egg removal in the WSP system -- 1.3.4.4 Lima, Peru: Vibrio cholera reduction in the San Juan de Miraflores WSP-reuse system -- 1.3.4.5 Mendoza, Argentina: Campo Espejo waste stabilization ponds with reuse in agriculture -- 1.4 THE SUSTAINABLE DEVELOPMENT GOALS AND INTEGRATED WASTEWATER MANAGEMENT -- 1.4.1 The 2030 Agenda for Sustainable Development. -- 1.4.2 Sustainable development goals relevant for integrated wastewater management -- 1.4.2.1 Goal 2: end hunger, achieve food security, improve nutrition, promote sustainable agriculture -- 1.4.2.2 Goal: 3 ensure healthy lives and promote well-being for all ages -- 1.4.2.3 Goal 6: ensure availability and sustainable management of water and sanitation for all -- Chapter 2: Selection of natural systems for wastewater treatment with reuse in agriculture -- 2.1 INTRODUCTION -- 2.2 WASTEWATER CHARACTERISTICS AND TRADITIONAL LEVELS OF TREATMENT -- 2.2.1 Characteristics of domestic wastewater -- 2.2.1.1 Screenings and grit -- 2.2.1.2 Pathogens -- 2.2.1.3 Total suspended solids -- 2.2.1.4 Biodegradable organics -- 2.2.1.5 Nutrients -- 2.2.2 Levels of wastewater treatment.
2.3 PATHOGEN REDUCTION IN WASTEWATER TREATMENT PROCESSES -- 2.3.1 High-rate treatment processes -- 2.3.2 Pathogen reduction data from operating high-rate treatment systems -- 2.3.2.1 Activated sludge treatment plants without disinfection in Tunisia -- 2.3.2.2 Activated sludge treatment plant with chlorine disinfection in the US -- 2.3.2.3 Activated sludge treatment plants with microfiltration and disinfection in Spain -- 2.3.3 Natural system treatment processes -- 2.4 NATURAL SYSTEM TREATMENT PROCESSES FOR INTEGRATED WASTEWATER MANAGEMENT -- 2.4.1 Facultative.maturation pond systems -- 2.4.1.1 Simplicity -- 2.4.1.2 Land requirements -- 2.4.1.3 Low cost -- 2.4.1.4 Minimal sludge handling -- 2.4.1.5 Process complexity and operation and maintenance requirements -- 2.4.1.6 Energy consumption -- 2.4.1.7 Process stability and resilience -- 2.4.2 Anaerobic.secondary facultative.maturation pond systems -- 2.4.3 UASB.secondary facultative.maturation pond systems -- 2.4.4 UASB.trickling filter.batch stabilization reservoir -- Chapter 3: Wastewater flows, design flowrate, and flow measurement -- 3.1 SOURCES OF WASTEWATER -- 3.2 WASTEWATER FLOWS -- 3.2.1 Domestic wastewater flow and urban water consumption -- 3.2.2 Infiltration and inflow -- 3.2.3 Industrial wastewater flows -- 3.3 DESIGN FLOWRATE -- 3.3.1 Design flowrate from wastewater flow data: the ideal case -- 3.3.2 Design flowrate by equation: the non-ideal case (but most common) -- 3.4 DESIGN EXAMPLE: DESIGN FLOWRATES FOR THE CITY OF TRINIDAD, HONDURAS -- 3.5 CASE STUDY: DESIGN FLOWRATE FOR SAYLLA, PERU -- Chapter 4: Preliminary treatment -- 4.1 INTRODUCTION -- 4.2 REMOVAL OF COARSE SOLIDS: BAR SCREENS -- 4.2.1 Design of bar screens -- 4.2.2 Design equations for bar screens and approach canal -- 4.2.3 Final disposal of screenings -- 4.3 GRIT REMOVAL: DESIGN OF GRIT CHAMBERS.
4.3.1 Free-flow Parshall flume equations for the design of grit chambers -- 4.3.2 Design of rectangular grit chambers -- 4.4 BYPASS CHANNEL DESIGN -- 4.5 PROCEDURE FOR PRELIMINARY TREATMENT DESIGN WITH THE PARSHALL FLUME -- 4.5.1 Case study design: preliminary treatment, WSP system, Catacamas, Honduras -- 4.6 FINAL DISPOSAL OF SCREENINGS AND GRIT -- Chapter 5: Theory and design of facultative ponds -- 5.1 NATURAL PROCESSES AS THE DRIVING FORCE IN FACULTATIVE PONDS -- 5.1.1 Algal and bacterial processes in the aerobic zone -- 5.1.2 Bacterial processes in the anaerobic zone -- 5.1.3 Process analysis: methane emissions from facultative pond, Catacamas, Honduras -- 5.2 THEORY OF DESIGN OF FACULTATIVE PONDS -- 5.2.1 Maximum organic surface loading -- 5.2.1.1 Sources of solar radiation data -- 5.2.1.1.1 CLIMWAT and CROPWAT -- 5.2.1.1.2 NASA POWER data access viewer -- 5.2.1.2 Water temperature and algal growth -- 5.2.1.2.1 Design water temperature -- 5.2.1.2.2 Temperature effects on algal growth -- 5.2.1.3 Case study: surface loading and facultative pond performance, Nagpur, India -- 5.2.1.4 Case study: organic overloading of facultative ponds in Honduras -- 5.2.2 Wind effects in facultative ponds -- 5.2.3 Hydraulic considerations -- 5.2.3.1 Longitudinal dispersion -- 5.2.3.2 Thermal stratification and hydraulic short circuiting -- 5.2.3.3 Sludge accumulation effect on hydraulic short circuiting -- 5.2.4 Pathogen reduction -- 5.2.4.1 Helminth egg reduction -- 5.2.4.2 E. coli or fecal coliform reduction -- 5.2.5 BOD5 removal -- 5.2.6 TSS removal -- 5.2.7 Sludge accumulation -- 5.2.7.1 Sludge accumulation reported in the literature -- 5.2.7.2 Projection of sludge accumulation with flowrates and solids loadings -- 5.2.7.3 Design example part 1: projection of sludge accumulation for TSS = 200 mg/L.
5.2.7.4 Design example part 2: projection of sludge accumulation for TSS = 350 mg/L -- 5.2.7.5 Discussion of design example results -- 5.3 FACULTATIVE POND DESIGN PROCEDURE -- 5.4 DESIGN EXAMPLE: FACULTATIVE POND REDESIGN FOR AGRICULTURAL REUSE, COCHABAMBA, BOLIVIA -- Chapter 6: Theory and design of maturation ponds -- 6.1 MATURATION PONDS AND PATHOGEN REDUCTION -- 6.1.1 Factors affecting pathogen reduction -- 6.1.1.1 Sunlight -- 6.1.1.2 Temperature -- 6.1.1.3 Hydraulic retention time -- 6.1.1.4 Sedimentation -- 6.1.1.5 Predation -- 6.1.2 Design strategies for pathogen reduction -- 6.1.2.1 Sunlight exposure -- 6.1.2.2 Depth -- 6.1.2.3 Maximize theoretical hydraulic retention time and minimize dispersion -- 6.1.2.4 Longitudinal dispersion and mean hydraulic retention time -- 6.1.2.5 Residence time distribution analysis to assess longitudinal dispersion -- 6.1.2.6 Limitations of residence time distribution studies -- 6.1.2.7 Case study: residence time distribution analysis to assess fecal coliform reduction in a maturation pond, Corinne, Utah, USA -- 6.1.2.8 Determination of residence time distribution parameters -- 6.1.2.9 Estimation of fecal coliform reduction using the Wehner and Wilhem equation -- 6.1.2.10 Comment on Corinne maturation pond case study -- 6.1.2.11 Wind abatement -- 6.1.2.12 Overflow rate -- 6.1.2.13 Rock filters -- 6.2 DESIGN OF MATURATION PONDS -- 6.2.1 Unbaffled ponds -- 6.2.1.1 Hydraulic retention time -- 6.2.1.2 Depths -- 6.2.1.3 Length to width ratios -- 6.2.1.4 Inlet/outlet structures -- 6.2.1.5 Case study: unbaffled maturation ponds in series, Belo Horizonte, Brazil -- 6.2.2 Baffled ponds -- 6.2.2.1 Depths -- 6.2.2.2 Length to width ratios -- 6.2.2.3 Transverse baffle equations: baffles parallel to width -- 6.2.2.4 Longitudinal baffle equations: baffles parallel to length.
6.2.2.5 Design example: comparison of transverse and longitudinal baffled ponds.
Description based on print version record.
Includes bibliographical references.
CC BY-NC-ND
Sewage Purification.
1-78906-153-9
language English
format eBook
author Oakley, Stewart,
spellingShingle Oakley, Stewart,
Integrated wastewater management for health and valorization : a design manual for resource challenged cities /
Cover -- Contents -- Preface -- Chapter 1: Integrated wastewater management for reuse in agriculture -- 1.1 INTRODUCTION -- 1.1.1 Wastewater and agriculture -- 1.1.1.1 Increasing water scarcity and stress -- 1.1.1.2 Population growth -- 1.1.1.3 Wastewater as a resource -- 1.1.2 The end-of-pipe paradigm for wastewater discharge -- 1.1.2.1 Global wastewater production, treatment, reuse, and discharge -- 1.1.2.2 Water resources and wastewater discharges -- 1.1.2.3 Global discharge of nitrogen and phosphorus -- 1.1.2.4 Energy use in mechanized wastewater treatment -- 1.1.3 The integrated wastewater management paradigm -- 1.1.3.1 Wastewater as a water resource -- 1.1.3.2 Semi-arid climates: irrigation water requirement 1500 mm/yr -- 1.1.3.3 Valorization of nutrients (N and P) in wastewater -- 1.1.3.4 Value as fertilizer, 2021 prices -- 1.1.3.5 Energy saved from fertilizer production -- 1.1.3.6 CO2,equiv emissions saved from not using synthetic fertilizers -- 1.1.3.7 Valorization of energy from anaerobic processes -- 1.2 WASTEWATER REUSE IN AGRICULTURE AND DEVELOPMENT OF END-OF-PIPE PARADIGM -- 1.2.1 Historical use of wastewater in agriculture: 3000 BCE-1915 CE -- 1.2.2 Decline of wastewater reuse with end-of-pipe paradigm: 1915-1990 -- 1.2.3 End-of-pipe paradigm with resource recovery in EU and North America: 2000-2020 -- 1.2.3.1 Secondary treatment with tertiary processes and resource recovery -- 1.2.3.2 Wastewater reuse in agriculture in the EU and the US -- 1.2.4 Wastewater treatment and resource recovery in China: 1980-2020 -- 1.2.4.1 Wastewater treatment and discharge of excess nitrogen to surface waters -- 1.2.4.2 Resource recovery in a Chinese 'concept wastewater treatment plant' -- 1.2.5 End-of-pipe paradigm in resource-limited cities/peri-urban areas: 2000-2020 -- 1.2.5.1 Indirect reuse of wastewater in agriculture.
1.2.5.2 Direct reuse of inadequately treated wastewater in agriculture -- 1.2.5.3 Direct reuse in agriculture with effluent wastewater meeting WHO guidelines -- 1.3 WASTEWATER TREATMENT FOR AGRICULTURAL REUSE IN RESOURCE-LIMITED REGIONS -- 1.3.1 Urban population growth -- 1.3.2 Coverage of wastewater treatment in the EU and North America -- 1.3.3 Coverage of wastewater treatment in resource-limited SDG regions -- 1.3.4 Effectiveness of wastewater treatment in resource-challenged urban areas -- 1.3.4.1 Bolivia: waste stabilization ponds and wastewater reuse -- 1.3.4.2 Honduras: pathogen reduction in waste stabilization ponds -- 1.3.4.3 Ouagadougou, Burkina Faso: protozoan cyst and helminth egg removal in the WSP system -- 1.3.4.4 Lima, Peru: Vibrio cholera reduction in the San Juan de Miraflores WSP-reuse system -- 1.3.4.5 Mendoza, Argentina: Campo Espejo waste stabilization ponds with reuse in agriculture -- 1.4 THE SUSTAINABLE DEVELOPMENT GOALS AND INTEGRATED WASTEWATER MANAGEMENT -- 1.4.1 The 2030 Agenda for Sustainable Development. -- 1.4.2 Sustainable development goals relevant for integrated wastewater management -- 1.4.2.1 Goal 2: end hunger, achieve food security, improve nutrition, promote sustainable agriculture -- 1.4.2.2 Goal: 3 ensure healthy lives and promote well-being for all ages -- 1.4.2.3 Goal 6: ensure availability and sustainable management of water and sanitation for all -- Chapter 2: Selection of natural systems for wastewater treatment with reuse in agriculture -- 2.1 INTRODUCTION -- 2.2 WASTEWATER CHARACTERISTICS AND TRADITIONAL LEVELS OF TREATMENT -- 2.2.1 Characteristics of domestic wastewater -- 2.2.1.1 Screenings and grit -- 2.2.1.2 Pathogens -- 2.2.1.3 Total suspended solids -- 2.2.1.4 Biodegradable organics -- 2.2.1.5 Nutrients -- 2.2.2 Levels of wastewater treatment.
2.3 PATHOGEN REDUCTION IN WASTEWATER TREATMENT PROCESSES -- 2.3.1 High-rate treatment processes -- 2.3.2 Pathogen reduction data from operating high-rate treatment systems -- 2.3.2.1 Activated sludge treatment plants without disinfection in Tunisia -- 2.3.2.2 Activated sludge treatment plant with chlorine disinfection in the US -- 2.3.2.3 Activated sludge treatment plants with microfiltration and disinfection in Spain -- 2.3.3 Natural system treatment processes -- 2.4 NATURAL SYSTEM TREATMENT PROCESSES FOR INTEGRATED WASTEWATER MANAGEMENT -- 2.4.1 Facultative.maturation pond systems -- 2.4.1.1 Simplicity -- 2.4.1.2 Land requirements -- 2.4.1.3 Low cost -- 2.4.1.4 Minimal sludge handling -- 2.4.1.5 Process complexity and operation and maintenance requirements -- 2.4.1.6 Energy consumption -- 2.4.1.7 Process stability and resilience -- 2.4.2 Anaerobic.secondary facultative.maturation pond systems -- 2.4.3 UASB.secondary facultative.maturation pond systems -- 2.4.4 UASB.trickling filter.batch stabilization reservoir -- Chapter 3: Wastewater flows, design flowrate, and flow measurement -- 3.1 SOURCES OF WASTEWATER -- 3.2 WASTEWATER FLOWS -- 3.2.1 Domestic wastewater flow and urban water consumption -- 3.2.2 Infiltration and inflow -- 3.2.3 Industrial wastewater flows -- 3.3 DESIGN FLOWRATE -- 3.3.1 Design flowrate from wastewater flow data: the ideal case -- 3.3.2 Design flowrate by equation: the non-ideal case (but most common) -- 3.4 DESIGN EXAMPLE: DESIGN FLOWRATES FOR THE CITY OF TRINIDAD, HONDURAS -- 3.5 CASE STUDY: DESIGN FLOWRATE FOR SAYLLA, PERU -- Chapter 4: Preliminary treatment -- 4.1 INTRODUCTION -- 4.2 REMOVAL OF COARSE SOLIDS: BAR SCREENS -- 4.2.1 Design of bar screens -- 4.2.2 Design equations for bar screens and approach canal -- 4.2.3 Final disposal of screenings -- 4.3 GRIT REMOVAL: DESIGN OF GRIT CHAMBERS.
4.3.1 Free-flow Parshall flume equations for the design of grit chambers -- 4.3.2 Design of rectangular grit chambers -- 4.4 BYPASS CHANNEL DESIGN -- 4.5 PROCEDURE FOR PRELIMINARY TREATMENT DESIGN WITH THE PARSHALL FLUME -- 4.5.1 Case study design: preliminary treatment, WSP system, Catacamas, Honduras -- 4.6 FINAL DISPOSAL OF SCREENINGS AND GRIT -- Chapter 5: Theory and design of facultative ponds -- 5.1 NATURAL PROCESSES AS THE DRIVING FORCE IN FACULTATIVE PONDS -- 5.1.1 Algal and bacterial processes in the aerobic zone -- 5.1.2 Bacterial processes in the anaerobic zone -- 5.1.3 Process analysis: methane emissions from facultative pond, Catacamas, Honduras -- 5.2 THEORY OF DESIGN OF FACULTATIVE PONDS -- 5.2.1 Maximum organic surface loading -- 5.2.1.1 Sources of solar radiation data -- 5.2.1.1.1 CLIMWAT and CROPWAT -- 5.2.1.1.2 NASA POWER data access viewer -- 5.2.1.2 Water temperature and algal growth -- 5.2.1.2.1 Design water temperature -- 5.2.1.2.2 Temperature effects on algal growth -- 5.2.1.3 Case study: surface loading and facultative pond performance, Nagpur, India -- 5.2.1.4 Case study: organic overloading of facultative ponds in Honduras -- 5.2.2 Wind effects in facultative ponds -- 5.2.3 Hydraulic considerations -- 5.2.3.1 Longitudinal dispersion -- 5.2.3.2 Thermal stratification and hydraulic short circuiting -- 5.2.3.3 Sludge accumulation effect on hydraulic short circuiting -- 5.2.4 Pathogen reduction -- 5.2.4.1 Helminth egg reduction -- 5.2.4.2 E. coli or fecal coliform reduction -- 5.2.5 BOD5 removal -- 5.2.6 TSS removal -- 5.2.7 Sludge accumulation -- 5.2.7.1 Sludge accumulation reported in the literature -- 5.2.7.2 Projection of sludge accumulation with flowrates and solids loadings -- 5.2.7.3 Design example part 1: projection of sludge accumulation for TSS = 200 mg/L.
5.2.7.4 Design example part 2: projection of sludge accumulation for TSS = 350 mg/L -- 5.2.7.5 Discussion of design example results -- 5.3 FACULTATIVE POND DESIGN PROCEDURE -- 5.4 DESIGN EXAMPLE: FACULTATIVE POND REDESIGN FOR AGRICULTURAL REUSE, COCHABAMBA, BOLIVIA -- Chapter 6: Theory and design of maturation ponds -- 6.1 MATURATION PONDS AND PATHOGEN REDUCTION -- 6.1.1 Factors affecting pathogen reduction -- 6.1.1.1 Sunlight -- 6.1.1.2 Temperature -- 6.1.1.3 Hydraulic retention time -- 6.1.1.4 Sedimentation -- 6.1.1.5 Predation -- 6.1.2 Design strategies for pathogen reduction -- 6.1.2.1 Sunlight exposure -- 6.1.2.2 Depth -- 6.1.2.3 Maximize theoretical hydraulic retention time and minimize dispersion -- 6.1.2.4 Longitudinal dispersion and mean hydraulic retention time -- 6.1.2.5 Residence time distribution analysis to assess longitudinal dispersion -- 6.1.2.6 Limitations of residence time distribution studies -- 6.1.2.7 Case study: residence time distribution analysis to assess fecal coliform reduction in a maturation pond, Corinne, Utah, USA -- 6.1.2.8 Determination of residence time distribution parameters -- 6.1.2.9 Estimation of fecal coliform reduction using the Wehner and Wilhem equation -- 6.1.2.10 Comment on Corinne maturation pond case study -- 6.1.2.11 Wind abatement -- 6.1.2.12 Overflow rate -- 6.1.2.13 Rock filters -- 6.2 DESIGN OF MATURATION PONDS -- 6.2.1 Unbaffled ponds -- 6.2.1.1 Hydraulic retention time -- 6.2.1.2 Depths -- 6.2.1.3 Length to width ratios -- 6.2.1.4 Inlet/outlet structures -- 6.2.1.5 Case study: unbaffled maturation ponds in series, Belo Horizonte, Brazil -- 6.2.2 Baffled ponds -- 6.2.2.1 Depths -- 6.2.2.2 Length to width ratios -- 6.2.2.3 Transverse baffle equations: baffles parallel to width -- 6.2.2.4 Longitudinal baffle equations: baffles parallel to length.
6.2.2.5 Design example: comparison of transverse and longitudinal baffled ponds.
author_facet Oakley, Stewart,
author_variant s o so
author_role VerfasserIn
author_sort Oakley, Stewart,
title Integrated wastewater management for health and valorization : a design manual for resource challenged cities /
title_sub a design manual for resource challenged cities /
title_full Integrated wastewater management for health and valorization : a design manual for resource challenged cities / Stewart Oakley.
title_fullStr Integrated wastewater management for health and valorization : a design manual for resource challenged cities / Stewart Oakley.
title_full_unstemmed Integrated wastewater management for health and valorization : a design manual for resource challenged cities / Stewart Oakley.
title_auth Integrated wastewater management for health and valorization : a design manual for resource challenged cities /
title_new Integrated wastewater management for health and valorization :
title_sort integrated wastewater management for health and valorization : a design manual for resource challenged cities /
publisher IWA Publishing,
publishDate 2022
physical 1 online resource (370 pages)
edition 1st ed.
contents Cover -- Contents -- Preface -- Chapter 1: Integrated wastewater management for reuse in agriculture -- 1.1 INTRODUCTION -- 1.1.1 Wastewater and agriculture -- 1.1.1.1 Increasing water scarcity and stress -- 1.1.1.2 Population growth -- 1.1.1.3 Wastewater as a resource -- 1.1.2 The end-of-pipe paradigm for wastewater discharge -- 1.1.2.1 Global wastewater production, treatment, reuse, and discharge -- 1.1.2.2 Water resources and wastewater discharges -- 1.1.2.3 Global discharge of nitrogen and phosphorus -- 1.1.2.4 Energy use in mechanized wastewater treatment -- 1.1.3 The integrated wastewater management paradigm -- 1.1.3.1 Wastewater as a water resource -- 1.1.3.2 Semi-arid climates: irrigation water requirement 1500 mm/yr -- 1.1.3.3 Valorization of nutrients (N and P) in wastewater -- 1.1.3.4 Value as fertilizer, 2021 prices -- 1.1.3.5 Energy saved from fertilizer production -- 1.1.3.6 CO2,equiv emissions saved from not using synthetic fertilizers -- 1.1.3.7 Valorization of energy from anaerobic processes -- 1.2 WASTEWATER REUSE IN AGRICULTURE AND DEVELOPMENT OF END-OF-PIPE PARADIGM -- 1.2.1 Historical use of wastewater in agriculture: 3000 BCE-1915 CE -- 1.2.2 Decline of wastewater reuse with end-of-pipe paradigm: 1915-1990 -- 1.2.3 End-of-pipe paradigm with resource recovery in EU and North America: 2000-2020 -- 1.2.3.1 Secondary treatment with tertiary processes and resource recovery -- 1.2.3.2 Wastewater reuse in agriculture in the EU and the US -- 1.2.4 Wastewater treatment and resource recovery in China: 1980-2020 -- 1.2.4.1 Wastewater treatment and discharge of excess nitrogen to surface waters -- 1.2.4.2 Resource recovery in a Chinese 'concept wastewater treatment plant' -- 1.2.5 End-of-pipe paradigm in resource-limited cities/peri-urban areas: 2000-2020 -- 1.2.5.1 Indirect reuse of wastewater in agriculture.
1.2.5.2 Direct reuse of inadequately treated wastewater in agriculture -- 1.2.5.3 Direct reuse in agriculture with effluent wastewater meeting WHO guidelines -- 1.3 WASTEWATER TREATMENT FOR AGRICULTURAL REUSE IN RESOURCE-LIMITED REGIONS -- 1.3.1 Urban population growth -- 1.3.2 Coverage of wastewater treatment in the EU and North America -- 1.3.3 Coverage of wastewater treatment in resource-limited SDG regions -- 1.3.4 Effectiveness of wastewater treatment in resource-challenged urban areas -- 1.3.4.1 Bolivia: waste stabilization ponds and wastewater reuse -- 1.3.4.2 Honduras: pathogen reduction in waste stabilization ponds -- 1.3.4.3 Ouagadougou, Burkina Faso: protozoan cyst and helminth egg removal in the WSP system -- 1.3.4.4 Lima, Peru: Vibrio cholera reduction in the San Juan de Miraflores WSP-reuse system -- 1.3.4.5 Mendoza, Argentina: Campo Espejo waste stabilization ponds with reuse in agriculture -- 1.4 THE SUSTAINABLE DEVELOPMENT GOALS AND INTEGRATED WASTEWATER MANAGEMENT -- 1.4.1 The 2030 Agenda for Sustainable Development. -- 1.4.2 Sustainable development goals relevant for integrated wastewater management -- 1.4.2.1 Goal 2: end hunger, achieve food security, improve nutrition, promote sustainable agriculture -- 1.4.2.2 Goal: 3 ensure healthy lives and promote well-being for all ages -- 1.4.2.3 Goal 6: ensure availability and sustainable management of water and sanitation for all -- Chapter 2: Selection of natural systems for wastewater treatment with reuse in agriculture -- 2.1 INTRODUCTION -- 2.2 WASTEWATER CHARACTERISTICS AND TRADITIONAL LEVELS OF TREATMENT -- 2.2.1 Characteristics of domestic wastewater -- 2.2.1.1 Screenings and grit -- 2.2.1.2 Pathogens -- 2.2.1.3 Total suspended solids -- 2.2.1.4 Biodegradable organics -- 2.2.1.5 Nutrients -- 2.2.2 Levels of wastewater treatment.
2.3 PATHOGEN REDUCTION IN WASTEWATER TREATMENT PROCESSES -- 2.3.1 High-rate treatment processes -- 2.3.2 Pathogen reduction data from operating high-rate treatment systems -- 2.3.2.1 Activated sludge treatment plants without disinfection in Tunisia -- 2.3.2.2 Activated sludge treatment plant with chlorine disinfection in the US -- 2.3.2.3 Activated sludge treatment plants with microfiltration and disinfection in Spain -- 2.3.3 Natural system treatment processes -- 2.4 NATURAL SYSTEM TREATMENT PROCESSES FOR INTEGRATED WASTEWATER MANAGEMENT -- 2.4.1 Facultative.maturation pond systems -- 2.4.1.1 Simplicity -- 2.4.1.2 Land requirements -- 2.4.1.3 Low cost -- 2.4.1.4 Minimal sludge handling -- 2.4.1.5 Process complexity and operation and maintenance requirements -- 2.4.1.6 Energy consumption -- 2.4.1.7 Process stability and resilience -- 2.4.2 Anaerobic.secondary facultative.maturation pond systems -- 2.4.3 UASB.secondary facultative.maturation pond systems -- 2.4.4 UASB.trickling filter.batch stabilization reservoir -- Chapter 3: Wastewater flows, design flowrate, and flow measurement -- 3.1 SOURCES OF WASTEWATER -- 3.2 WASTEWATER FLOWS -- 3.2.1 Domestic wastewater flow and urban water consumption -- 3.2.2 Infiltration and inflow -- 3.2.3 Industrial wastewater flows -- 3.3 DESIGN FLOWRATE -- 3.3.1 Design flowrate from wastewater flow data: the ideal case -- 3.3.2 Design flowrate by equation: the non-ideal case (but most common) -- 3.4 DESIGN EXAMPLE: DESIGN FLOWRATES FOR THE CITY OF TRINIDAD, HONDURAS -- 3.5 CASE STUDY: DESIGN FLOWRATE FOR SAYLLA, PERU -- Chapter 4: Preliminary treatment -- 4.1 INTRODUCTION -- 4.2 REMOVAL OF COARSE SOLIDS: BAR SCREENS -- 4.2.1 Design of bar screens -- 4.2.2 Design equations for bar screens and approach canal -- 4.2.3 Final disposal of screenings -- 4.3 GRIT REMOVAL: DESIGN OF GRIT CHAMBERS.
4.3.1 Free-flow Parshall flume equations for the design of grit chambers -- 4.3.2 Design of rectangular grit chambers -- 4.4 BYPASS CHANNEL DESIGN -- 4.5 PROCEDURE FOR PRELIMINARY TREATMENT DESIGN WITH THE PARSHALL FLUME -- 4.5.1 Case study design: preliminary treatment, WSP system, Catacamas, Honduras -- 4.6 FINAL DISPOSAL OF SCREENINGS AND GRIT -- Chapter 5: Theory and design of facultative ponds -- 5.1 NATURAL PROCESSES AS THE DRIVING FORCE IN FACULTATIVE PONDS -- 5.1.1 Algal and bacterial processes in the aerobic zone -- 5.1.2 Bacterial processes in the anaerobic zone -- 5.1.3 Process analysis: methane emissions from facultative pond, Catacamas, Honduras -- 5.2 THEORY OF DESIGN OF FACULTATIVE PONDS -- 5.2.1 Maximum organic surface loading -- 5.2.1.1 Sources of solar radiation data -- 5.2.1.1.1 CLIMWAT and CROPWAT -- 5.2.1.1.2 NASA POWER data access viewer -- 5.2.1.2 Water temperature and algal growth -- 5.2.1.2.1 Design water temperature -- 5.2.1.2.2 Temperature effects on algal growth -- 5.2.1.3 Case study: surface loading and facultative pond performance, Nagpur, India -- 5.2.1.4 Case study: organic overloading of facultative ponds in Honduras -- 5.2.2 Wind effects in facultative ponds -- 5.2.3 Hydraulic considerations -- 5.2.3.1 Longitudinal dispersion -- 5.2.3.2 Thermal stratification and hydraulic short circuiting -- 5.2.3.3 Sludge accumulation effect on hydraulic short circuiting -- 5.2.4 Pathogen reduction -- 5.2.4.1 Helminth egg reduction -- 5.2.4.2 E. coli or fecal coliform reduction -- 5.2.5 BOD5 removal -- 5.2.6 TSS removal -- 5.2.7 Sludge accumulation -- 5.2.7.1 Sludge accumulation reported in the literature -- 5.2.7.2 Projection of sludge accumulation with flowrates and solids loadings -- 5.2.7.3 Design example part 1: projection of sludge accumulation for TSS = 200 mg/L.
5.2.7.4 Design example part 2: projection of sludge accumulation for TSS = 350 mg/L -- 5.2.7.5 Discussion of design example results -- 5.3 FACULTATIVE POND DESIGN PROCEDURE -- 5.4 DESIGN EXAMPLE: FACULTATIVE POND REDESIGN FOR AGRICULTURAL REUSE, COCHABAMBA, BOLIVIA -- Chapter 6: Theory and design of maturation ponds -- 6.1 MATURATION PONDS AND PATHOGEN REDUCTION -- 6.1.1 Factors affecting pathogen reduction -- 6.1.1.1 Sunlight -- 6.1.1.2 Temperature -- 6.1.1.3 Hydraulic retention time -- 6.1.1.4 Sedimentation -- 6.1.1.5 Predation -- 6.1.2 Design strategies for pathogen reduction -- 6.1.2.1 Sunlight exposure -- 6.1.2.2 Depth -- 6.1.2.3 Maximize theoretical hydraulic retention time and minimize dispersion -- 6.1.2.4 Longitudinal dispersion and mean hydraulic retention time -- 6.1.2.5 Residence time distribution analysis to assess longitudinal dispersion -- 6.1.2.6 Limitations of residence time distribution studies -- 6.1.2.7 Case study: residence time distribution analysis to assess fecal coliform reduction in a maturation pond, Corinne, Utah, USA -- 6.1.2.8 Determination of residence time distribution parameters -- 6.1.2.9 Estimation of fecal coliform reduction using the Wehner and Wilhem equation -- 6.1.2.10 Comment on Corinne maturation pond case study -- 6.1.2.11 Wind abatement -- 6.1.2.12 Overflow rate -- 6.1.2.13 Rock filters -- 6.2 DESIGN OF MATURATION PONDS -- 6.2.1 Unbaffled ponds -- 6.2.1.1 Hydraulic retention time -- 6.2.1.2 Depths -- 6.2.1.3 Length to width ratios -- 6.2.1.4 Inlet/outlet structures -- 6.2.1.5 Case study: unbaffled maturation ponds in series, Belo Horizonte, Brazil -- 6.2.2 Baffled ponds -- 6.2.2.1 Depths -- 6.2.2.2 Length to width ratios -- 6.2.2.3 Transverse baffle equations: baffles parallel to width -- 6.2.2.4 Longitudinal baffle equations: baffles parallel to length.
6.2.2.5 Design example: comparison of transverse and longitudinal baffled ponds.
isbn 1-78906-153-9
callnumber-first T - Technology
callnumber-subject TD - Environmental Technology
callnumber-label TD745
callnumber-sort TD 3745 O255 42022
illustrated Illustrated
dewey-hundreds 600 - Technology
dewey-tens 630 - Agriculture
dewey-ones 636 - Animal husbandry
dewey-full 636.005
dewey-sort 3636.005
dewey-raw 636.005
dewey-search 636.005
work_keys_str_mv AT oakleystewart integratedwastewatermanagementforhealthandvalorizationadesignmanualforresourcechallengedcities
status_str n
ids_txt_mv (CKB)5450000000454481
(NjHacI)995450000000454481
(MiAaPQ)EBC30201320
(Au-PeEL)EBL30201320
(ScCtBLL)550d3a89-1f36-4975-8fba-cc881e933ad2
(EXLCZ)995450000000454481
carrierType_str_mv cr
is_hierarchy_title Integrated wastewater management for health and valorization : a design manual for resource challenged cities /
_version_ 1796652534052421632
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12278nam a2200469 i 4500</leader><controlfield tag="001">993568677004498</controlfield><controlfield tag="005">20240411163159.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr#|||||||||||</controlfield><controlfield tag="008">230802s2022 enka ob 000 0 eng d</controlfield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">https://doi.org/10.2166/9781789061536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5450000000454481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(NjHacI)995450000000454481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC30201320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30201320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ScCtBLL)550d3a89-1f36-4975-8fba-cc881e933ad2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995450000000454481</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TD745</subfield><subfield code="b">.O255 2022</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">636.005</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oakley, Stewart,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrated wastewater management for health and valorization :</subfield><subfield code="b">a design manual for resource challenged cities /</subfield><subfield code="c">Stewart Oakley.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, England :</subfield><subfield code="b">IWA Publishing,</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (370 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adequate wastewater treatment in low to medium income cities worldwide has largely been a failure despite decades of funding. The still dominant end-of-pipe paradigm of treatment for surface water discharge, focusing principally on removal of organic matter, has not addressed the well-published problems of pathogen and nutrient release with continued contamination of surface waters. This book incorporates the new paradigm of integrated wastewater management for valorization without surface water discharge using waste stabilization pond systems and wastewater reservoirs. In this paradigm the purpose of treatment is to protect health by reducing pathogens to produce an effluent that is valorized for its fertilizer and water value for agriculture and aquaculture. Methane production as a sustainable energy source is also considered for those applications where it is appropriate. Emphasis is on sustainable engineering solutions for low to medium income cities worldwide. Chapters present the theory of design, followed by design procedures, example design problems, and case study examples with data, diagrams and photos of operating systems. Excel spreadsheets and the FAO program CLIMWAT/CROPWAT are included in examples throughout. Sections on engineering practice include technical training, operation and maintenance requirements, construction and sustainability. The book incorporates design and operating data and case studies from Africa, Australia, Latin America, Europe, New Zealand, and the US, including studies that have been published in French, Portuguese, and Spanish.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Contents -- Preface -- Chapter 1: Integrated wastewater management for reuse in agriculture -- 1.1 INTRODUCTION -- 1.1.1 Wastewater and agriculture -- 1.1.1.1 Increasing water scarcity and stress -- 1.1.1.2 Population growth -- 1.1.1.3 Wastewater as a resource -- 1.1.2 The end-of-pipe paradigm for wastewater discharge -- 1.1.2.1 Global wastewater production, treatment, reuse, and discharge -- 1.1.2.2 Water resources and wastewater discharges -- 1.1.2.3 Global discharge of nitrogen and phosphorus -- 1.1.2.4 Energy use in mechanized wastewater treatment -- 1.1.3 The integrated wastewater management paradigm -- 1.1.3.1 Wastewater as a water resource -- 1.1.3.2 Semi-arid climates: irrigation water requirement 1500 mm/yr -- 1.1.3.3 Valorization of nutrients (N and P) in wastewater -- 1.1.3.4 Value as fertilizer, 2021 prices -- 1.1.3.5 Energy saved from fertilizer production -- 1.1.3.6 CO2,equiv emissions saved from not using synthetic fertilizers -- 1.1.3.7 Valorization of energy from anaerobic processes -- 1.2 WASTEWATER REUSE IN AGRICULTURE AND DEVELOPMENT OF END-OF-PIPE PARADIGM -- 1.2.1 Historical use of wastewater in agriculture: 3000 BCE-1915 CE -- 1.2.2 Decline of wastewater reuse with end-of-pipe paradigm: 1915-1990 -- 1.2.3 End-of-pipe paradigm with resource recovery in EU and North America: 2000-2020 -- 1.2.3.1 Secondary treatment with tertiary processes and resource recovery -- 1.2.3.2 Wastewater reuse in agriculture in the EU and the US -- 1.2.4 Wastewater treatment and resource recovery in China: 1980-2020 -- 1.2.4.1 Wastewater treatment and discharge of excess nitrogen to surface waters -- 1.2.4.2 Resource recovery in a Chinese 'concept wastewater treatment plant' -- 1.2.5 End-of-pipe paradigm in resource-limited cities/peri-urban areas: 2000-2020 -- 1.2.5.1 Indirect reuse of wastewater in agriculture.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.2.5.2 Direct reuse of inadequately treated wastewater in agriculture -- 1.2.5.3 Direct reuse in agriculture with effluent wastewater meeting WHO guidelines -- 1.3 WASTEWATER TREATMENT FOR AGRICULTURAL REUSE IN RESOURCE-LIMITED REGIONS -- 1.3.1 Urban population growth -- 1.3.2 Coverage of wastewater treatment in the EU and North America -- 1.3.3 Coverage of wastewater treatment in resource-limited SDG regions -- 1.3.4 Effectiveness of wastewater treatment in resource-challenged urban areas -- 1.3.4.1 Bolivia: waste stabilization ponds and wastewater reuse -- 1.3.4.2 Honduras: pathogen reduction in waste stabilization ponds -- 1.3.4.3 Ouagadougou, Burkina Faso: protozoan cyst and helminth egg removal in the WSP system -- 1.3.4.4 Lima, Peru: Vibrio cholera reduction in the San Juan de Miraflores WSP-reuse system -- 1.3.4.5 Mendoza, Argentina: Campo Espejo waste stabilization ponds with reuse in agriculture -- 1.4 THE SUSTAINABLE DEVELOPMENT GOALS AND INTEGRATED WASTEWATER MANAGEMENT -- 1.4.1 The 2030 Agenda for Sustainable Development. -- 1.4.2 Sustainable development goals relevant for integrated wastewater management -- 1.4.2.1 Goal 2: end hunger, achieve food security, improve nutrition, promote sustainable agriculture -- 1.4.2.2 Goal: 3 ensure healthy lives and promote well-being for all ages -- 1.4.2.3 Goal 6: ensure availability and sustainable management of water and sanitation for all -- Chapter 2: Selection of natural systems for wastewater treatment with reuse in agriculture -- 2.1 INTRODUCTION -- 2.2 WASTEWATER CHARACTERISTICS AND TRADITIONAL LEVELS OF TREATMENT -- 2.2.1 Characteristics of domestic wastewater -- 2.2.1.1 Screenings and grit -- 2.2.1.2 Pathogens -- 2.2.1.3 Total suspended solids -- 2.2.1.4 Biodegradable organics -- 2.2.1.5 Nutrients -- 2.2.2 Levels of wastewater treatment.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 PATHOGEN REDUCTION IN WASTEWATER TREATMENT PROCESSES -- 2.3.1 High-rate treatment processes -- 2.3.2 Pathogen reduction data from operating high-rate treatment systems -- 2.3.2.1 Activated sludge treatment plants without disinfection in Tunisia -- 2.3.2.2 Activated sludge treatment plant with chlorine disinfection in the US -- 2.3.2.3 Activated sludge treatment plants with microfiltration and disinfection in Spain -- 2.3.3 Natural system treatment processes -- 2.4 NATURAL SYSTEM TREATMENT PROCESSES FOR INTEGRATED WASTEWATER MANAGEMENT -- 2.4.1 Facultative.maturation pond systems -- 2.4.1.1 Simplicity -- 2.4.1.2 Land requirements -- 2.4.1.3 Low cost -- 2.4.1.4 Minimal sludge handling -- 2.4.1.5 Process complexity and operation and maintenance requirements -- 2.4.1.6 Energy consumption -- 2.4.1.7 Process stability and resilience -- 2.4.2 Anaerobic.secondary facultative.maturation pond systems -- 2.4.3 UASB.secondary facultative.maturation pond systems -- 2.4.4 UASB.trickling filter.batch stabilization reservoir -- Chapter 3: Wastewater flows, design flowrate, and flow measurement -- 3.1 SOURCES OF WASTEWATER -- 3.2 WASTEWATER FLOWS -- 3.2.1 Domestic wastewater flow and urban water consumption -- 3.2.2 Infiltration and inflow -- 3.2.3 Industrial wastewater flows -- 3.3 DESIGN FLOWRATE -- 3.3.1 Design flowrate from wastewater flow data: the ideal case -- 3.3.2 Design flowrate by equation: the non-ideal case (but most common) -- 3.4 DESIGN EXAMPLE: DESIGN FLOWRATES FOR THE CITY OF TRINIDAD, HONDURAS -- 3.5 CASE STUDY: DESIGN FLOWRATE FOR SAYLLA, PERU -- Chapter 4: Preliminary treatment -- 4.1 INTRODUCTION -- 4.2 REMOVAL OF COARSE SOLIDS: BAR SCREENS -- 4.2.1 Design of bar screens -- 4.2.2 Design equations for bar screens and approach canal -- 4.2.3 Final disposal of screenings -- 4.3 GRIT REMOVAL: DESIGN OF GRIT CHAMBERS.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.1 Free-flow Parshall flume equations for the design of grit chambers -- 4.3.2 Design of rectangular grit chambers -- 4.4 BYPASS CHANNEL DESIGN -- 4.5 PROCEDURE FOR PRELIMINARY TREATMENT DESIGN WITH THE PARSHALL FLUME -- 4.5.1 Case study design: preliminary treatment, WSP system, Catacamas, Honduras -- 4.6 FINAL DISPOSAL OF SCREENINGS AND GRIT -- Chapter 5: Theory and design of facultative ponds -- 5.1 NATURAL PROCESSES AS THE DRIVING FORCE IN FACULTATIVE PONDS -- 5.1.1 Algal and bacterial processes in the aerobic zone -- 5.1.2 Bacterial processes in the anaerobic zone -- 5.1.3 Process analysis: methane emissions from facultative pond, Catacamas, Honduras -- 5.2 THEORY OF DESIGN OF FACULTATIVE PONDS -- 5.2.1 Maximum organic surface loading -- 5.2.1.1 Sources of solar radiation data -- 5.2.1.1.1 CLIMWAT and CROPWAT -- 5.2.1.1.2 NASA POWER data access viewer -- 5.2.1.2 Water temperature and algal growth -- 5.2.1.2.1 Design water temperature -- 5.2.1.2.2 Temperature effects on algal growth -- 5.2.1.3 Case study: surface loading and facultative pond performance, Nagpur, India -- 5.2.1.4 Case study: organic overloading of facultative ponds in Honduras -- 5.2.2 Wind effects in facultative ponds -- 5.2.3 Hydraulic considerations -- 5.2.3.1 Longitudinal dispersion -- 5.2.3.2 Thermal stratification and hydraulic short circuiting -- 5.2.3.3 Sludge accumulation effect on hydraulic short circuiting -- 5.2.4 Pathogen reduction -- 5.2.4.1 Helminth egg reduction -- 5.2.4.2 E. coli or fecal coliform reduction -- 5.2.5 BOD5 removal -- 5.2.6 TSS removal -- 5.2.7 Sludge accumulation -- 5.2.7.1 Sludge accumulation reported in the literature -- 5.2.7.2 Projection of sludge accumulation with flowrates and solids loadings -- 5.2.7.3 Design example part 1: projection of sludge accumulation for TSS = 200 mg/L.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2.7.4 Design example part 2: projection of sludge accumulation for TSS = 350 mg/L -- 5.2.7.5 Discussion of design example results -- 5.3 FACULTATIVE POND DESIGN PROCEDURE -- 5.4 DESIGN EXAMPLE: FACULTATIVE POND REDESIGN FOR AGRICULTURAL REUSE, COCHABAMBA, BOLIVIA -- Chapter 6: Theory and design of maturation ponds -- 6.1 MATURATION PONDS AND PATHOGEN REDUCTION -- 6.1.1 Factors affecting pathogen reduction -- 6.1.1.1 Sunlight -- 6.1.1.2 Temperature -- 6.1.1.3 Hydraulic retention time -- 6.1.1.4 Sedimentation -- 6.1.1.5 Predation -- 6.1.2 Design strategies for pathogen reduction -- 6.1.2.1 Sunlight exposure -- 6.1.2.2 Depth -- 6.1.2.3 Maximize theoretical hydraulic retention time and minimize dispersion -- 6.1.2.4 Longitudinal dispersion and mean hydraulic retention time -- 6.1.2.5 Residence time distribution analysis to assess longitudinal dispersion -- 6.1.2.6 Limitations of residence time distribution studies -- 6.1.2.7 Case study: residence time distribution analysis to assess fecal coliform reduction in a maturation pond, Corinne, Utah, USA -- 6.1.2.8 Determination of residence time distribution parameters -- 6.1.2.9 Estimation of fecal coliform reduction using the Wehner and Wilhem equation -- 6.1.2.10 Comment on Corinne maturation pond case study -- 6.1.2.11 Wind abatement -- 6.1.2.12 Overflow rate -- 6.1.2.13 Rock filters -- 6.2 DESIGN OF MATURATION PONDS -- 6.2.1 Unbaffled ponds -- 6.2.1.1 Hydraulic retention time -- 6.2.1.2 Depths -- 6.2.1.3 Length to width ratios -- 6.2.1.4 Inlet/outlet structures -- 6.2.1.5 Case study: unbaffled maturation ponds in series, Belo Horizonte, Brazil -- 6.2.2 Baffled ponds -- 6.2.2.1 Depths -- 6.2.2.2 Length to width ratios -- 6.2.2.3 Transverse baffle equations: baffles parallel to width -- 6.2.2.4 Longitudinal baffle equations: baffles parallel to length.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.2.5 Design example: comparison of transverse and longitudinal baffled ponds.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="f">CC BY-NC-ND</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sewage</subfield><subfield code="x">Purification.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">1-78906-153-9</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-04-13 00:36:21 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-07-14 08:50:39 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5341202670004498&amp;Force_direct=true</subfield><subfield code="Z">5341202670004498</subfield><subfield code="b">Available</subfield><subfield code="8">5341202670004498</subfield></datafield></record></collection>