Piezoelectric MEMS / / edited by Ulrich Schmid, Michael Schneider.

Electromechanical transducers based on piezoelectric layers and thin films are continuously finding their way into micro-electromechanical systems (MEMS). Piezoelectric transducers feature a linear voltage response, no snap-in behavior and can provide both attractive and repulsive forces. This remov...

Full description

Saved in:
Bibliographic Details
TeilnehmendeR:
Place / Publishing House:Basel, Switzerland : : MDPI - Multidisciplinary Digital Publishing Institute,, [2018]
©2018
Year of Publication:2018
Language:English
Physical Description:1 online resource (176 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993562250404498
ctrlnum (CKB)4920000000095230
(NjHacI)994920000000095230
(EXLCZ)994920000000095230
collection bib_alma
record_format marc
spelling Piezoelectric MEMS / edited by Ulrich Schmid, Michael Schneider.
Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute, [2018]
©2018
1 online resource (176 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on publisher supplied metadata and other sources.
Electromechanical transducers based on piezoelectric layers and thin films are continuously finding their way into micro-electromechanical systems (MEMS). Piezoelectric transducers feature a linear voltage response, no snap-in behavior and can provide both attractive and repulsive forces. This removes inherent physical limitations present in the commonly used electrostatic transducer approach, while maintaining beneficial properties such as low-power operation. In order to exploit the full potential of piezoelectric MEMS, interdisciplinary research efforts range from investigations of advanced piezoelectric materials over the design of novel piezoelectric MEMS sensor and actuator devices, to the integration of PiezoMEMS devices into full low-power systems. In this Special Issue, the current status of this exciting research field will be presented, covering a wide range of topics including, but not limited to: - Experimental and theoretical research on piezoelectric materials such as AlN, ScAlN, ZnO or PZT, PVDF with a strong focus on the application of MEMS devices. - Deposition and synthesis techniques for piezoelectric materials enabling integration of those materials into MEMS fabrication processes. - Modelling and simulation of piezoelectric MEMS devices and systems. - Piezoelectric MEMS resonators for measuring physical quantities such as mass, acceleration, yaw rate, pressure and viscosity or density of liquids. - Optical MEMS devices, such as scanning micro mirror devices and optical switches, based on piezoelectric MEMS. - Acoustic devices, such as SAW, BAW or FBARs and acoustic transducers, based on piezoelectric MEMS, such as microphones or loudspeakers. - Piezoelectric energy harvesting devices. - Specific packaging aspects of piezoelectric devices and systems. - Low and zero power systems, featuring low-power sensors combined with energy harvesting devices, at least one of which is based on piezoelectric MEMS.
About the Special Issue Editors -- Editorial for the Special Issue on Piezoelectric MEMS -- Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model -- Modeling and Identification of the Rate-Dependent Hysteresis of Piezoelectric Actuator Using a Modified Prandtl-Ishlinskii Model -- Transparent Ferroelectric Capacitors on Glass -- Design and Simulation of A Novel Piezoelectric AlN-Si Cantilever Gyroscope -- Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification -- Influences of Excitation on Dynamic Characteristics of Piezoelectric Micro-Jets -- Comparative Influences of Fluid and Shell on Modeled Ejection Performance of a Piezoelectric Micro-Jet -- A PZT Actuated Triple-Finger Gripper for Multi-Target Micromanipulation -- Potential of Piezoelectric MEMS Resonators for Grape Must Fermentation Monitoring -- MEMS Gyroscopes Based on Acoustic Sagnac Effect -- Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems -- Design, Characterization and Sensitivity Analysis of a Piezoelectric Ceramic/Metal Composite Transducer -- Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms.
Piezoelectric devices.
Microelectromechanical systems Design and construction.
3-03897-005-0
Schmid, Ulrich, editor.
Schneider, Michael, editor.
language English
format eBook
author2 Schmid, Ulrich,
Schneider, Michael,
author_facet Schmid, Ulrich,
Schneider, Michael,
author2_variant u s us
m s ms
author2_role TeilnehmendeR
TeilnehmendeR
title Piezoelectric MEMS /
spellingShingle Piezoelectric MEMS /
About the Special Issue Editors -- Editorial for the Special Issue on Piezoelectric MEMS -- Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model -- Modeling and Identification of the Rate-Dependent Hysteresis of Piezoelectric Actuator Using a Modified Prandtl-Ishlinskii Model -- Transparent Ferroelectric Capacitors on Glass -- Design and Simulation of A Novel Piezoelectric AlN-Si Cantilever Gyroscope -- Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification -- Influences of Excitation on Dynamic Characteristics of Piezoelectric Micro-Jets -- Comparative Influences of Fluid and Shell on Modeled Ejection Performance of a Piezoelectric Micro-Jet -- A PZT Actuated Triple-Finger Gripper for Multi-Target Micromanipulation -- Potential of Piezoelectric MEMS Resonators for Grape Must Fermentation Monitoring -- MEMS Gyroscopes Based on Acoustic Sagnac Effect -- Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems -- Design, Characterization and Sensitivity Analysis of a Piezoelectric Ceramic/Metal Composite Transducer -- Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms.
title_full Piezoelectric MEMS / edited by Ulrich Schmid, Michael Schneider.
title_fullStr Piezoelectric MEMS / edited by Ulrich Schmid, Michael Schneider.
title_full_unstemmed Piezoelectric MEMS / edited by Ulrich Schmid, Michael Schneider.
title_auth Piezoelectric MEMS /
title_new Piezoelectric MEMS /
title_sort piezoelectric mems /
publisher MDPI - Multidisciplinary Digital Publishing Institute,
publishDate 2018
physical 1 online resource (176 pages)
contents About the Special Issue Editors -- Editorial for the Special Issue on Piezoelectric MEMS -- Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model -- Modeling and Identification of the Rate-Dependent Hysteresis of Piezoelectric Actuator Using a Modified Prandtl-Ishlinskii Model -- Transparent Ferroelectric Capacitors on Glass -- Design and Simulation of A Novel Piezoelectric AlN-Si Cantilever Gyroscope -- Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification -- Influences of Excitation on Dynamic Characteristics of Piezoelectric Micro-Jets -- Comparative Influences of Fluid and Shell on Modeled Ejection Performance of a Piezoelectric Micro-Jet -- A PZT Actuated Triple-Finger Gripper for Multi-Target Micromanipulation -- Potential of Piezoelectric MEMS Resonators for Grape Must Fermentation Monitoring -- MEMS Gyroscopes Based on Acoustic Sagnac Effect -- Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems -- Design, Characterization and Sensitivity Analysis of a Piezoelectric Ceramic/Metal Composite Transducer -- Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms.
isbn 3-03897-005-0
callnumber-first T - Technology
callnumber-subject TK - Electrical and Nuclear Engineering
callnumber-label TK7872
callnumber-sort TK 47872 P54 P549 42018
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 621 - Applied physics
dewey-full 621.3815
dewey-sort 3621.3815
dewey-raw 621.3815
dewey-search 621.3815
work_keys_str_mv AT schmidulrich piezoelectricmems
AT schneidermichael piezoelectricmems
status_str n
ids_txt_mv (CKB)4920000000095230
(NjHacI)994920000000095230
(EXLCZ)994920000000095230
carrierType_str_mv cr
is_hierarchy_title Piezoelectric MEMS /
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1764986212552015872
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03023nam a2200313 i 4500</leader><controlfield tag="001">993562250404498</controlfield><controlfield tag="005">20230327083151.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">230327s2018 sz o 000 0 eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4920000000095230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(NjHacI)994920000000095230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994920000000095230</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NjHacI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">NjHacl</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7872.P54</subfield><subfield code="b">.P549 2018</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">621.3815</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Piezoelectric MEMS /</subfield><subfield code="c">edited by Ulrich Schmid, Michael Schneider.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel, Switzerland :</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (176 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electromechanical transducers based on piezoelectric layers and thin films are continuously finding their way into micro-electromechanical systems (MEMS). Piezoelectric transducers feature a linear voltage response, no snap-in behavior and can provide both attractive and repulsive forces. This removes inherent physical limitations present in the commonly used electrostatic transducer approach, while maintaining beneficial properties such as low-power operation. In order to exploit the full potential of piezoelectric MEMS, interdisciplinary research efforts range from investigations of advanced piezoelectric materials over the design of novel piezoelectric MEMS sensor and actuator devices, to the integration of PiezoMEMS devices into full low-power systems. In this Special Issue, the current status of this exciting research field will be presented, covering a wide range of topics including, but not limited to: - Experimental and theoretical research on piezoelectric materials such as AlN, ScAlN, ZnO or PZT, PVDF with a strong focus on the application of MEMS devices. - Deposition and synthesis techniques for piezoelectric materials enabling integration of those materials into MEMS fabrication processes. - Modelling and simulation of piezoelectric MEMS devices and systems. - Piezoelectric MEMS resonators for measuring physical quantities such as mass, acceleration, yaw rate, pressure and viscosity or density of liquids. - Optical MEMS devices, such as scanning micro mirror devices and optical switches, based on piezoelectric MEMS. - Acoustic devices, such as SAW, BAW or FBARs and acoustic transducers, based on piezoelectric MEMS, such as microphones or loudspeakers. - Piezoelectric energy harvesting devices. - Specific packaging aspects of piezoelectric devices and systems. - Low and zero power systems, featuring low-power sensors combined with energy harvesting devices, at least one of which is based on piezoelectric MEMS.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">About the Special Issue Editors -- Editorial for the Special Issue on Piezoelectric MEMS -- Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model -- Modeling and Identification of the Rate-Dependent Hysteresis of Piezoelectric Actuator Using a Modified Prandtl-Ishlinskii Model -- Transparent Ferroelectric Capacitors on Glass -- Design and Simulation of A Novel Piezoelectric AlN-Si Cantilever Gyroscope -- Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification -- Influences of Excitation on Dynamic Characteristics of Piezoelectric Micro-Jets -- Comparative Influences of Fluid and Shell on Modeled Ejection Performance of a Piezoelectric Micro-Jet -- A PZT Actuated Triple-Finger Gripper for Multi-Target Micromanipulation -- Potential of Piezoelectric MEMS Resonators for Grape Must Fermentation Monitoring -- MEMS Gyroscopes Based on Acoustic Sagnac Effect -- Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems -- Design, Characterization and Sensitivity Analysis of a Piezoelectric Ceramic/Metal Composite Transducer -- Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Piezoelectric devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Microelectromechanical systems</subfield><subfield code="x">Design and construction.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03897-005-0</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmid, Ulrich,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Michael,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-04-15 13:35:45 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2019-11-10 04:18:40 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337907260004498&amp;Force_direct=true</subfield><subfield code="Z">5337907260004498</subfield><subfield code="8">5337907260004498</subfield></datafield></record></collection>