Breaking the cycle : : attacking the malaria parasite in the liver / / edited by Ute Frevert, Urszula Krzych, Thomas L. Richie.

Despite significant progress in the global fight against malaria, this parasitic infection is still responsible for nearly 300 million clinical cases and more than half a million deaths each year, predominantly in African children less than 5 years of age. The infection starts when mosquitoes transm...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers in Human Neuroscience,
:
TeilnehmendeR:
Place / Publishing House:[Place of publication not identified] : : Frontiers Media SA,, 2015.
Year of Publication:2015
Language:English
Series:Frontiers in Human Neuroscience,
Physical Description:1 online resource (173 pages) :; illustrations, charts; digital, PDF file(s).
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04705nam a2200625 i 4500
001 993547671104498
005 20240730214743.0
006 m fo d 00| 0
007 cr#c|#---|||||
008 160411s2015uuuuxx ad||fob 00|-0|eng|d
024 7 |a 10.3389/978-2-88919-695-1  |2 doi 
035 |a (CKB)3710000000631104 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/42444 
035 |a (EXLCZ)993710000000631104 
040 |a UkMaJRU  |e rda  |d NZ-WeVUL 
041 0 |a eng 
100 1 |a Richie, Thomas  |4 auth  |1 http://viaf.org/viaf/2373164842504613040006 
245 0 0 |a Breaking the cycle :  |b attacking the malaria parasite in the liver /  |c edited by Ute Frevert, Urszula Krzych, Thomas L. Richie. 
260 |b Frontiers Media SA  |c 2015 
264 1 |a [Place of publication not identified] :  |b Frontiers Media SA,  |c 2015. 
300 |a 1 online resource (173 pages) :  |b illustrations, charts; digital, PDF file(s). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Frontiers research topics 
490 1 |a Frontiers in Human Neuroscience,  |x 1664-8714 
504 |a Includes bibliographical references. 
506 |a Open access  |f Unrestricted online access  |2 star 
520 3 |a Despite significant progress in the global fight against malaria, this parasitic infection is still responsible for nearly 300 million clinical cases and more than half a million deaths each year, predominantly in African children less than 5 years of age. The infection starts when mosquitoes transmit small numbers of parasites into the skin. From here, the parasites travel with the bloodstream to the liver where they undergo an initial round of replication and maturation to the next developmental stage that infects red blood cells. A vaccine capable of blocking the clinically silent liver phase of the Plasmodium life cycle would prevent the subsequent symptomatic phase of this tropical disease, including its frequently fatal manifestations such as severe anemia, acute lung injury, and cerebral malaria. Parasitologists, immunologists, and vaccinologists have come to appreciate the complexity of the adaptive immune response against the liver stages of this deadly parasite. Lymphocytes play a central role in the elimination of Plasmodium infected hepatocytes, both in humans and animal models, but our understanding of the exact cellular interactions and molecular effector mechanisms that lead to parasite killing within the complex hepatic microenvironment of an immune host is still rudimentary. Nevertheless, recent collaborative efforts have led to promising vaccine approaches based on liver stages that have conferred sterile immunity in humans – the University of Oxford's Ad prime / MVA boost vaccine, the Naval Medical Research Center’s DNA prime / Ad boost vaccine, Sanaria, Inc.'s radiation-attenuated whole sporozoite vaccine, and Radboud University Nijmegen Medical Centre’s chemoprophylaxis with sporozoites vaccine. The aim of this Research Topic is to bring together researchers with expertise in malariology, immunology, hepatology, antigen discovery and vaccine development to provide a better understanding of the basic biology of Plasmodium in the liver and the host’s innate and adaptive immune responses. Understanding the conditions required to generate complete protection in a vaccinated individual will bring us closer to our ultimate goal, namely to develop a safe, scalable, and affordable malaria vaccine capable of inducing sustained high-level protective immunity in the large proportion of the world’s population constantly at risk of malaria. 
588 |a Description based on e-publication, viewed on January 16, 2019. 
546 |a English 
650 0 |a Plasmodium falciparum. 
650 0 |a Malaria  |x Immunological aspects. 
650 0 |a Malaria  |x Prevention. 
650 0 |a Malaria  |x Research. 
650 0 |a Liver  |x Immunology. 
650 0 |a Liver  |x Parasites. 
650 0 |a Hepatology. 
650 7 |a Plasmodis  |2 lemac 
653 |a CD8 T cell 
653 |a Plasmodium 
653 |a B cell 
653 |a antigen-presenting cell 
653 |a immune response 
653 |a Malaria vaccine 
653 |a hepatic microenvironment 
653 |a CD4 T cell 
653 |a animal model 
653 |a adjuvants 
700 1 |a Frevert, Ute  |e editor 
700 1 |a Krzych, Urszula,  |e editor, contributor.  |1 https://orcid.org/0000-0002-6428-3949 
700 1 |a Richie, Thomas  |4 auth  |1 http://viaf.org/viaf/2373164842504613040006 
776 |z 2-88919-695-X 
830 0 |a Frontiers in Human Neuroscience,  |x 1664-8714. 
906 |a BOOK 
ADM |b 2024-07-31 01:04:12 Europe/Vienna  |d 00  |f system  |c marc21  |a 2016-04-12 04:07:06 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338613890004498&Force_direct=true  |Z 5338613890004498  |b Available  |8 5338613890004498