Emergent neural computation from the interaction of different forms of plasticity / / topic editors, Cristina Savin, IST Austria, Austria, Matthieu Gilson, Universitat Pompeu Fabra, Spain, Friedemann Zenke, Stanford University, USA.

From the propagation of neural activity through synapses, to the integration of signals in the dendritic arbor, and the processes determining action potential generation, virtually all aspects of neural processing are plastic. This plasticity underlies the remarkable versatility and robustness of co...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
TeilnehmendeR:
Year of Publication:2016
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (193 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993547658904498
ctrlnum (CKB)3710000000631085
(oapen)https://directory.doabooks.org/handle/20.500.12854/46243
(EXLCZ)993710000000631085
collection bib_alma
record_format marc
spelling Emergent neural computation from the interaction of different forms of plasticity / topic editors, Cristina Savin, IST Austria, Austria, Matthieu Gilson, Universitat Pompeu Fabra, Spain, Friedemann Zenke, Stanford University, USA.
Frontiers Media SA 2016
1 electronic resource (193 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Frontiers Research Topics
From the propagation of neural activity through synapses, to the integration of signals in the dendritic arbor, and the processes determining action potential generation, virtually all aspects of neural processing are plastic. This plasticity underlies the remarkable versatility and robustness of cortical circuits: it enables the brain to learn regularities in its sensory inputs, to remember the past, and to recover function after injury. While much of the research into learning and memory has focused on forms of Hebbian plasticity at excitatory synapses (LTD/LTP, STDP), several other plasticity mechanisms have been characterized experimentally, including the plasticity of inhibitory circuits (Kullmann, 2012), synaptic scaling (Turrigiano, 2011) and intrinsic plasticity (Zhang and Linden, 2003). However, our current understanding of the computational roles of these plasticity mechanisms remains rudimentary at best. While traditionally they are assumed to serve a homeostatic purpose, counterbalancing the destabilizing effects of Hebbian learning, recent work suggests that they can have a profound impact on circuit function (Savin 2010, Vogels 2011, Keck 2012). Hence, theoretical investigation into the functional implications of these mechanisms may shed new light on the computational principles at work in neural circuits. This Research Topic of Frontiers in Computational Neuroscience aims to bring together recent advances in theoretical modeling of different plasticity mechanisms and of their contributions to circuit function. Topics of interest include the computational roles of plasticity of inhibitory circuitry, metaplasticity, synaptic scaling, intrinsic plasticity, plasticity within the dendritic arbor and in particular studies on the interplay between homeostatic and Hebbian plasticity, and their joint contribution to network function.
English
Creative Commons NonCommercial-NoDerivs https://creativecommons.org/licenses/http://journal.frontiersin.org/researchtopic/2004/emergent-neural-computation-from-the-interaction-of-different-forms-of-plasticity
Description based on online resource ; title from PDF title page (viewed on 04/01/2021)
Unrestricted online access star
Intrinsic Plasticity
structural plasticity
heterosynaptic plasticity
Homeostasis
reward-modulated learning
synaptic plasticity
STDP
inhibitory plasticity
metaplasticity
short-term plasticity
Computational neuroscience.
Neuroplasticity.
2-88919-788-3
Gilson, Matthieu, editor.
Savin, Cristina, 1982- editor.
Zenke, Friedemann, editor.
language English
format eBook
author2 Gilson, Matthieu,
Savin, Cristina, 1982-
Zenke, Friedemann,
author_facet Gilson, Matthieu,
Savin, Cristina, 1982-
Zenke, Friedemann,
author2_variant m g mg
c s cs
f z fz
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
title Emergent neural computation from the interaction of different forms of plasticity /
spellingShingle Emergent neural computation from the interaction of different forms of plasticity /
Frontiers Research Topics
title_full Emergent neural computation from the interaction of different forms of plasticity / topic editors, Cristina Savin, IST Austria, Austria, Matthieu Gilson, Universitat Pompeu Fabra, Spain, Friedemann Zenke, Stanford University, USA.
title_fullStr Emergent neural computation from the interaction of different forms of plasticity / topic editors, Cristina Savin, IST Austria, Austria, Matthieu Gilson, Universitat Pompeu Fabra, Spain, Friedemann Zenke, Stanford University, USA.
title_full_unstemmed Emergent neural computation from the interaction of different forms of plasticity / topic editors, Cristina Savin, IST Austria, Austria, Matthieu Gilson, Universitat Pompeu Fabra, Spain, Friedemann Zenke, Stanford University, USA.
title_auth Emergent neural computation from the interaction of different forms of plasticity /
title_new Emergent neural computation from the interaction of different forms of plasticity /
title_sort emergent neural computation from the interaction of different forms of plasticity /
series Frontiers Research Topics
series2 Frontiers Research Topics
publisher Frontiers Media SA
publishDate 2016
physical 1 electronic resource (193 p.)
isbn 2-88919-788-3
callnumber-first Q - Science
callnumber-subject QP - Physiology
callnumber-label QP357
callnumber-sort QP 3357.5
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 610 - Medicine & health
dewey-ones 612 - Human physiology
dewey-full 612.8/233
dewey-sort 3612.8 3233
dewey-raw 612.8/233
dewey-search 612.8/233
work_keys_str_mv AT gilsonmatthieu emergentneuralcomputationfromtheinteractionofdifferentformsofplasticity
AT savincristina emergentneuralcomputationfromtheinteractionofdifferentformsofplasticity
AT zenkefriedemann emergentneuralcomputationfromtheinteractionofdifferentformsofplasticity
status_str n
ids_txt_mv (CKB)3710000000631085
(oapen)https://directory.doabooks.org/handle/20.500.12854/46243
(EXLCZ)993710000000631085
carrierType_str_mv cr
hierarchy_parent_title Frontiers Research Topics
is_hierarchy_title Emergent neural computation from the interaction of different forms of plasticity /
container_title Frontiers Research Topics
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1797653537992212480
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03798nam-a2200493z--4500</leader><controlfield tag="001">993547658904498</controlfield><controlfield tag="005">20240424225736.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2016 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)3710000000631085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/46243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)993710000000631085</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">QP357.5</subfield></datafield><datafield tag="082" ind1="0" ind2="0"><subfield code="a">612.8/233</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Emergent neural computation from the interaction of different forms of plasticity /</subfield><subfield code="c">topic editors, Cristina Savin, IST Austria, Austria, Matthieu Gilson, Universitat Pompeu Fabra, Spain, Friedemann Zenke, Stanford University, USA.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Frontiers Media SA</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (193 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers Research Topics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">From the propagation of neural activity through synapses, to the integration of signals in the dendritic arbor, and the processes determining action potential generation, virtually all aspects of neural processing are plastic. This plasticity underlies the remarkable versatility and robustness of cortical circuits: it enables the brain to learn regularities in its sensory inputs, to remember the past, and to recover function after injury. While much of the research into learning and memory has focused on forms of Hebbian plasticity at excitatory synapses (LTD/LTP, STDP), several other plasticity mechanisms have been characterized experimentally, including the plasticity of inhibitory circuits (Kullmann, 2012), synaptic scaling (Turrigiano, 2011) and intrinsic plasticity (Zhang and Linden, 2003). However, our current understanding of the computational roles of these plasticity mechanisms remains rudimentary at best. While traditionally they are assumed to serve a homeostatic purpose, counterbalancing the destabilizing effects of Hebbian learning, recent work suggests that they can have a profound impact on circuit function (Savin 2010, Vogels 2011, Keck 2012). Hence, theoretical investigation into the functional implications of these mechanisms may shed new light on the computational principles at work in neural circuits. This Research Topic of Frontiers in Computational Neuroscience aims to bring together recent advances in theoretical modeling of different plasticity mechanisms and of their contributions to circuit function. Topics of interest include the computational roles of plasticity of inhibitory circuitry, metaplasticity, synaptic scaling, intrinsic plasticity, plasticity within the dendritic arbor and in particular studies on the interplay between homeostatic and Hebbian plasticity, and their joint contribution to network function.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Creative Commons NonCommercial-NoDerivs</subfield><subfield code="u">https://creativecommons.org/licenses/http://journal.frontiersin.org/researchtopic/2004/emergent-neural-computation-from-the-interaction-of-different-forms-of-plasticity</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on online resource ; title from PDF title page (viewed on 04/01/2021)</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="f">Unrestricted online access</subfield><subfield code="2">star</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Intrinsic Plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">structural plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">heterosynaptic plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Homeostasis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">reward-modulated learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">synaptic plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">STDP</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">inhibitory plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metaplasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">short-term plasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computational neuroscience.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neuroplasticity.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">2-88919-788-3</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilson, Matthieu,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savin, Cristina,</subfield><subfield code="d">1982-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zenke, Friedemann,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-04-26 02:59:13 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2016-04-12 04:07:06 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338610290004498&amp;Force_direct=true</subfield><subfield code="Z">5338610290004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338610290004498</subfield></datafield></record></collection>