Emergent neural computation from the interaction of different forms of plasticity / / topic editors, Cristina Savin, IST Austria, Austria, Matthieu Gilson, Universitat Pompeu Fabra, Spain, Friedemann Zenke, Stanford University, USA.

From the propagation of neural activity through synapses, to the integration of signals in the dendritic arbor, and the processes determining action potential generation, virtually all aspects of neural processing are plastic. This plasticity underlies the remarkable versatility and robustness of co...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
TeilnehmendeR:
Year of Publication:2016
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (193 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03798nam-a2200493z--4500
001 993547658904498
005 20240424225736.0
006 m o d
007 cr|mn|---annan
008 202102s2016 xx |||||o ||| 0|eng d
035 |a (CKB)3710000000631085 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/46243 
035 |a (EXLCZ)993710000000631085 
041 0 |a eng 
050 0 0 |a QP357.5 
082 0 0 |a 612.8/233  |2 23 
245 0 0 |a Emergent neural computation from the interaction of different forms of plasticity /  |c topic editors, Cristina Savin, IST Austria, Austria, Matthieu Gilson, Universitat Pompeu Fabra, Spain, Friedemann Zenke, Stanford University, USA. 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 electronic resource (193 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
520 |a From the propagation of neural activity through synapses, to the integration of signals in the dendritic arbor, and the processes determining action potential generation, virtually all aspects of neural processing are plastic. This plasticity underlies the remarkable versatility and robustness of cortical circuits: it enables the brain to learn regularities in its sensory inputs, to remember the past, and to recover function after injury. While much of the research into learning and memory has focused on forms of Hebbian plasticity at excitatory synapses (LTD/LTP, STDP), several other plasticity mechanisms have been characterized experimentally, including the plasticity of inhibitory circuits (Kullmann, 2012), synaptic scaling (Turrigiano, 2011) and intrinsic plasticity (Zhang and Linden, 2003). However, our current understanding of the computational roles of these plasticity mechanisms remains rudimentary at best. While traditionally they are assumed to serve a homeostatic purpose, counterbalancing the destabilizing effects of Hebbian learning, recent work suggests that they can have a profound impact on circuit function (Savin 2010, Vogels 2011, Keck 2012). Hence, theoretical investigation into the functional implications of these mechanisms may shed new light on the computational principles at work in neural circuits. This Research Topic of Frontiers in Computational Neuroscience aims to bring together recent advances in theoretical modeling of different plasticity mechanisms and of their contributions to circuit function. Topics of interest include the computational roles of plasticity of inhibitory circuitry, metaplasticity, synaptic scaling, intrinsic plasticity, plasticity within the dendritic arbor and in particular studies on the interplay between homeostatic and Hebbian plasticity, and their joint contribution to network function. 
546 |a English 
540 |a Creative Commons NonCommercial-NoDerivs  |u https://creativecommons.org/licenses/http://journal.frontiersin.org/researchtopic/2004/emergent-neural-computation-from-the-interaction-of-different-forms-of-plasticity 
588 |a Description based on online resource ; title from PDF title page (viewed on 04/01/2021) 
506 0 |f Unrestricted online access  |2 star 
653 |a Intrinsic Plasticity 
653 |a structural plasticity 
653 |a heterosynaptic plasticity 
653 |a Homeostasis 
653 |a reward-modulated learning 
653 |a synaptic plasticity 
653 |a STDP 
653 |a inhibitory plasticity 
653 |a metaplasticity 
653 |a short-term plasticity 
650 0 |a Computational neuroscience. 
650 0 |a Neuroplasticity. 
776 |z 2-88919-788-3 
700 1 |a Gilson, Matthieu,  |e editor. 
700 1 |a Savin, Cristina,  |d 1982-  |e editor. 
700 1 |a Zenke, Friedemann,  |e editor. 
906 |a BOOK 
ADM |b 2024-04-26 02:59:13 Europe/Vienna  |f system  |c marc21  |a 2016-04-12 04:07:06 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338610290004498&Force_direct=true  |Z 5338610290004498  |b Available  |8 5338610290004498