Neuronal Mechanics and Transport

Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins reg...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
:
Year of Publication:2016
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (212 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993546874404498
ctrlnum (CKB)3710000001041986
(oapen)https://directory.doabooks.org/handle/20.500.12854/54516
(EXLCZ)993710000001041986
collection bib_alma
record_format marc
spelling Kyle E. Miller auth
Neuronal Mechanics and Transport
Frontiers Media SA 2016
1 electronic resource (212 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Frontiers Research Topics
Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins regulating axonal and dendritic growth and guidance. However, relatively little is known about the relative contribution and role of cytoskeletal dynamics, transport of organelles and cytoskeletal components, and force generation to axonal elongation. Advancing the knowledge of these biomechanical processes is critical to better understand the development of the nervous system, the pathological progression of neurodegenerative diseases, acute traumatic injury, and for designing novel approaches to promote neuronal regeneration following disease, stroke, or trauma. Mechanical properties and forces shape the development of the nervous system from the cellular up to the organ level. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity influence axonal elongation. Given the complexity and mechanical nature of this problem, mathematical modeling contributes significantly to our understanding of neuronal mechanics. Nonetheless, there has been limited direct interaction and discussions between experimentalists and theoreticians in this research area. The purpose of this Frontiers Research Topic is to highlight exciting and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries.
English
neuronal development
neuronal mechanics
Axonal elongation
force
Neuronal morphology
stiffness
glia
Neuronal transport
2-88919-823-5
Daniel M. Suter auth
language English
format eBook
author Kyle E. Miller
spellingShingle Kyle E. Miller
Neuronal Mechanics and Transport
Frontiers Research Topics
author_facet Kyle E. Miller
Daniel M. Suter
author_variant k e m kem
author2 Daniel M. Suter
author2_variant d m s dms
author_sort Kyle E. Miller
title Neuronal Mechanics and Transport
title_full Neuronal Mechanics and Transport
title_fullStr Neuronal Mechanics and Transport
title_full_unstemmed Neuronal Mechanics and Transport
title_auth Neuronal Mechanics and Transport
title_new Neuronal Mechanics and Transport
title_sort neuronal mechanics and transport
series Frontiers Research Topics
series2 Frontiers Research Topics
publisher Frontiers Media SA
publishDate 2016
physical 1 electronic resource (212 p.)
isbn 2-88919-823-5
illustrated Not Illustrated
work_keys_str_mv AT kyleemiller neuronalmechanicsandtransport
AT danielmsuter neuronalmechanicsandtransport
status_str n
ids_txt_mv (CKB)3710000001041986
(oapen)https://directory.doabooks.org/handle/20.500.12854/54516
(EXLCZ)993710000001041986
carrierType_str_mv cr
hierarchy_parent_title Frontiers Research Topics
is_hierarchy_title Neuronal Mechanics and Transport
container_title Frontiers Research Topics
author2_original_writing_str_mv noLinkedField
_version_ 1796651979906220032
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03001nam-a2200373z--4500</leader><controlfield tag="001">993546874404498</controlfield><controlfield tag="005">20231214132944.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2016 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)3710000001041986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/54516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)993710000001041986</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kyle E. Miller</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neuronal Mechanics and Transport</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Frontiers Media SA</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (212 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers Research Topics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins regulating axonal and dendritic growth and guidance. However, relatively little is known about the relative contribution and role of cytoskeletal dynamics, transport of organelles and cytoskeletal components, and force generation to axonal elongation. Advancing the knowledge of these biomechanical processes is critical to better understand the development of the nervous system, the pathological progression of neurodegenerative diseases, acute traumatic injury, and for designing novel approaches to promote neuronal regeneration following disease, stroke, or trauma. Mechanical properties and forces shape the development of the nervous system from the cellular up to the organ level. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity influence axonal elongation. Given the complexity and mechanical nature of this problem, mathematical modeling contributes significantly to our understanding of neuronal mechanics. Nonetheless, there has been limited direct interaction and discussions between experimentalists and theoreticians in this research area. The purpose of this Frontiers Research Topic is to highlight exciting and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neuronal development</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neuronal mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Axonal elongation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">force</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neuronal morphology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">glia</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neuronal transport</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">2-88919-823-5</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Daniel M. Suter</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:37:53 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2017-02-11 15:57:25 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338354970004498&amp;Force_direct=true</subfield><subfield code="Z">5338354970004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338354970004498</subfield></datafield></record></collection>