Neuronal Mechanics and Transport

Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins reg...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
:
Year of Publication:2016
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (212 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03001nam-a2200373z--4500
001 993546874404498
005 20231214132944.0
006 m o d
007 cr|mn|---annan
008 202102s2016 xx |||||o ||| 0|eng d
035 |a (CKB)3710000001041986 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/54516 
035 |a (EXLCZ)993710000001041986 
041 0 |a eng 
100 1 |a Kyle E. Miller  |4 auth 
245 1 0 |a Neuronal Mechanics and Transport 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 electronic resource (212 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
520 |a Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins regulating axonal and dendritic growth and guidance. However, relatively little is known about the relative contribution and role of cytoskeletal dynamics, transport of organelles and cytoskeletal components, and force generation to axonal elongation. Advancing the knowledge of these biomechanical processes is critical to better understand the development of the nervous system, the pathological progression of neurodegenerative diseases, acute traumatic injury, and for designing novel approaches to promote neuronal regeneration following disease, stroke, or trauma. Mechanical properties and forces shape the development of the nervous system from the cellular up to the organ level. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity influence axonal elongation. Given the complexity and mechanical nature of this problem, mathematical modeling contributes significantly to our understanding of neuronal mechanics. Nonetheless, there has been limited direct interaction and discussions between experimentalists and theoreticians in this research area. The purpose of this Frontiers Research Topic is to highlight exciting and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries. 
546 |a English 
653 |a neuronal development 
653 |a neuronal mechanics 
653 |a Axonal elongation 
653 |a force 
653 |a Neuronal morphology 
653 |a stiffness 
653 |a glia 
653 |a Neuronal transport 
776 |z 2-88919-823-5 
700 1 |a Daniel M. Suter  |4 auth 
906 |a BOOK 
ADM |b 2023-12-15 05:37:53 Europe/Vienna  |f system  |c marc21  |a 2017-02-11 15:57:25 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338354970004498&Force_direct=true  |Z 5338354970004498  |b Available  |8 5338354970004498