Modelling, Simulation and Control of Thermal Energy Systems

Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utiliz...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (228 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545965504498
ctrlnum (CKB)5400000000040912
(oapen)https://directory.doabooks.org/handle/20.500.12854/69248
(EXLCZ)995400000000040912
collection bib_alma
record_format marc
spelling Lee, Kwang Y. edt
Modelling, Simulation and Control of Thermal Energy Systems
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
1 electronic resource (228 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.
English
History of engineering & technology bicssc
supercritical circulating fluidized bed
boiler-turbine unit
active disturbance rejection control
burning carbon
genetic algorithm
Solar-assisted coal-fired power generation system
Singular weighted method
load dispatch
CSP plant model
transient analysis
power tracking control
two-tank direct energy storage
electronic device
flip chip component
thermal stress
thermal fatigue
life prediction
combustion engine efficiency
dynamic states
artificial neural network
dynamic modeling
thermal management
parameter estimation
energy storage operation and planning
electric and solar vehicles
ultra-supercritical unit
deep neural network
stacked auto-encoder
maximum correntropy
heat exchanger
forced convection
film coefficient
heat transfer
water properties
integrated energy system
operational optimization
air–fuel ratio
combustion control
dynamic matrix control
power plant control
high temperature low sag conductor
coefficient of thermal expansion
overhead conductor
low sag performance
chemical looping
wavelets
NARMA model
generalized predictive control (GPC)
steam supply scheduling
exergetic analysis
multi-objective
ε-constraint method
3-03943-360-1
3-03943-361-X
Flynn, Damian edt
Xie, Hui edt
Sun, Li edt
Lee, Kwang Y. oth
Flynn, Damian oth
Xie, Hui oth
Sun, Li oth
language English
format eBook
author2 Flynn, Damian
Xie, Hui
Sun, Li
Lee, Kwang Y.
Flynn, Damian
Xie, Hui
Sun, Li
author_facet Flynn, Damian
Xie, Hui
Sun, Li
Lee, Kwang Y.
Flynn, Damian
Xie, Hui
Sun, Li
author2_variant k y l ky kyl
d f df
h x hx
l s ls
author2_role HerausgeberIn
HerausgeberIn
HerausgeberIn
Sonstige
Sonstige
Sonstige
Sonstige
title Modelling, Simulation and Control of Thermal Energy Systems
spellingShingle Modelling, Simulation and Control of Thermal Energy Systems
title_full Modelling, Simulation and Control of Thermal Energy Systems
title_fullStr Modelling, Simulation and Control of Thermal Energy Systems
title_full_unstemmed Modelling, Simulation and Control of Thermal Energy Systems
title_auth Modelling, Simulation and Control of Thermal Energy Systems
title_new Modelling, Simulation and Control of Thermal Energy Systems
title_sort modelling, simulation and control of thermal energy systems
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2020
physical 1 electronic resource (228 p.)
isbn 3-03943-360-1
3-03943-361-X
illustrated Not Illustrated
work_keys_str_mv AT leekwangy modellingsimulationandcontrolofthermalenergysystems
AT flynndamian modellingsimulationandcontrolofthermalenergysystems
AT xiehui modellingsimulationandcontrolofthermalenergysystems
AT sunli modellingsimulationandcontrolofthermalenergysystems
status_str n
ids_txt_mv (CKB)5400000000040912
(oapen)https://directory.doabooks.org/handle/20.500.12854/69248
(EXLCZ)995400000000040912
carrierType_str_mv cr
is_hierarchy_title Modelling, Simulation and Control of Thermal Energy Systems
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
_version_ 1796649061660491776
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05712nam-a2200985z--4500</leader><controlfield tag="001">993545965504498</controlfield><controlfield tag="005">20231214133630.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202105s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000040912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/69248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000040912</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Kwang Y.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling, Simulation and Control of Thermal Energy Systems</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (228 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">History of engineering &amp; technology</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">supercritical circulating fluidized bed</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">boiler-turbine unit</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">active disturbance rejection control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">burning carbon</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">genetic algorithm</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Solar-assisted coal-fired power generation system</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Singular weighted method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">load dispatch</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CSP plant model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transient analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">power tracking control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">two-tank direct energy storage</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electronic device</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">flip chip component</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thermal stress</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thermal fatigue</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">life prediction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">combustion engine efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dynamic states</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">artificial neural network</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dynamic modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thermal management</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">parameter estimation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">energy storage operation and planning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electric and solar vehicles</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ultra-supercritical unit</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deep neural network</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stacked auto-encoder</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">maximum correntropy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">heat exchanger</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">forced convection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">film coefficient</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">heat transfer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">water properties</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">integrated energy system</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">operational optimization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">air–fuel ratio</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">combustion control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dynamic matrix control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">power plant control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">high temperature low sag conductor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">coefficient of thermal expansion</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">overhead conductor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">low sag performance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">chemical looping</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wavelets</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">NARMA model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">generalized predictive control (GPC)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">steam supply scheduling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">exergetic analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multi-objective</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ε-constraint method</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-360-1</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-361-X</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flynn, Damian</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Hui</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Li</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Kwang Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flynn, Damian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Hui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:59:58 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338082240004498&amp;Force_direct=true</subfield><subfield code="Z">5338082240004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338082240004498</subfield></datafield></record></collection>