Modelling, Simulation and Control of Thermal Energy Systems

Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utiliz...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (228 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05712nam-a2200985z--4500
001 993545965504498
005 20231214133630.0
006 m o d
007 cr|mn|---annan
008 202105s2020 xx |||||o ||| 0|eng d
035 |a (CKB)5400000000040912 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/69248 
035 |a (EXLCZ)995400000000040912 
041 0 |a eng 
100 1 |a Lee, Kwang Y.  |4 edt 
245 1 0 |a Modelling, Simulation and Control of Thermal Energy Systems 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (228 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control. 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a supercritical circulating fluidized bed 
653 |a boiler-turbine unit 
653 |a active disturbance rejection control 
653 |a burning carbon 
653 |a genetic algorithm 
653 |a Solar-assisted coal-fired power generation system 
653 |a Singular weighted method 
653 |a load dispatch 
653 |a CSP plant model 
653 |a transient analysis 
653 |a power tracking control 
653 |a two-tank direct energy storage 
653 |a electronic device 
653 |a flip chip component 
653 |a thermal stress 
653 |a thermal fatigue 
653 |a life prediction 
653 |a combustion engine efficiency 
653 |a dynamic states 
653 |a artificial neural network 
653 |a dynamic modeling 
653 |a thermal management 
653 |a parameter estimation 
653 |a energy storage operation and planning 
653 |a electric and solar vehicles 
653 |a ultra-supercritical unit 
653 |a deep neural network 
653 |a stacked auto-encoder 
653 |a maximum correntropy 
653 |a heat exchanger 
653 |a forced convection 
653 |a film coefficient 
653 |a heat transfer 
653 |a water properties 
653 |a integrated energy system 
653 |a operational optimization 
653 |a air–fuel ratio 
653 |a combustion control 
653 |a dynamic matrix control 
653 |a power plant control 
653 |a high temperature low sag conductor 
653 |a coefficient of thermal expansion 
653 |a overhead conductor 
653 |a low sag performance 
653 |a chemical looping 
653 |a wavelets 
653 |a NARMA model 
653 |a generalized predictive control (GPC) 
653 |a steam supply scheduling 
653 |a exergetic analysis 
653 |a multi-objective 
653 |a ε-constraint method 
776 |z 3-03943-360-1 
776 |z 3-03943-361-X 
700 1 |a Flynn, Damian  |4 edt 
700 1 |a Xie, Hui  |4 edt 
700 1 |a Sun, Li  |4 edt 
700 1 |a Lee, Kwang Y.  |4 oth 
700 1 |a Flynn, Damian  |4 oth 
700 1 |a Xie, Hui  |4 oth 
700 1 |a Sun, Li  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:59:58 Europe/Vienna  |f system  |c marc21  |a 2022-04-04 09:22:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338082240004498&Force_direct=true  |Z 5338082240004498  |b Available  |8 5338082240004498