Dislocation Mechanics of Metal Plasticity and Fracturing

The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture m...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (188 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545485904498
ctrlnum (CKB)5400000000043728
(oapen)https://directory.doabooks.org/handle/20.500.12854/69250
(EXLCZ)995400000000043728
collection bib_alma
record_format marc
spelling Armstrong, Ronald W. edt
Dislocation Mechanics of Metal Plasticity and Fracturing
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
1 electronic resource (188 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.
English
Research & information: general bicssc
dislocation mechanics
yield strength
grain size
thermal activation
strain rate
impact tests
brittleness transition
fracturing
crack size
fracture mechanics
Hall-Petch equation
Griffith equation
size effect
mechanical strength
pearlitic steels
suspension bridge cables
dislocation microstructure
fractal analysis
plasticity
representative volume element
dislocation structure
dislocation correlations
dislocation avalanches
nanotwin
nanograin
Au–Cu alloy
micro-compression
Cu-Zr
ECAP
deformation
quasi-stationary
subgrains
grains
coarsening
Cu–Zr
ultrafine-grained material
dynamic recovery
transient
load change tests
Charpy impact test
GMAW
additive manufacturing
secondary cracks
anisotropy
linear flow splitting
crystal plasticity
DAMASK
texture
EBSD
crack tip dislocations
TEM
grain rotation
fatigue
dislocation configurations
residual stress
indentation
serration
temperature
dislocation
artificial aging
solid solution
loading curvature
aluminum alloy
holistic approach
dislocation group dynamics
dynamic factor
dislocation pile-up
yield stress
dislocation creep
fatigue crack growth rate
3-03943-264-8
3-03943-265-6
Armstrong, Ronald W. oth
language English
format eBook
author2 Armstrong, Ronald W.
author_facet Armstrong, Ronald W.
author2_variant r w a rw rwa
author2_role Sonstige
title Dislocation Mechanics of Metal Plasticity and Fracturing
spellingShingle Dislocation Mechanics of Metal Plasticity and Fracturing
title_full Dislocation Mechanics of Metal Plasticity and Fracturing
title_fullStr Dislocation Mechanics of Metal Plasticity and Fracturing
title_full_unstemmed Dislocation Mechanics of Metal Plasticity and Fracturing
title_auth Dislocation Mechanics of Metal Plasticity and Fracturing
title_new Dislocation Mechanics of Metal Plasticity and Fracturing
title_sort dislocation mechanics of metal plasticity and fracturing
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2020
physical 1 electronic resource (188 p.)
isbn 3-03943-264-8
3-03943-265-6
illustrated Not Illustrated
work_keys_str_mv AT armstrongronaldw dislocationmechanicsofmetalplasticityandfracturing
status_str n
ids_txt_mv (CKB)5400000000043728
(oapen)https://directory.doabooks.org/handle/20.500.12854/69250
(EXLCZ)995400000000043728
carrierType_str_mv cr
is_hierarchy_title Dislocation Mechanics of Metal Plasticity and Fracturing
author2_original_writing_str_mv noLinkedField
_version_ 1796652272609918976
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04590nam-a2201129z--4500</leader><controlfield tag="001">993545485904498</controlfield><controlfield tag="005">20231214133448.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202105s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000043728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/69250</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000043728</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Armstrong, Ronald W.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dislocation Mechanics of Metal Plasticity and Fracturing</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (188 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Research &amp; information: general</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">yield strength</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">grain size</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thermal activation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">strain rate</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">impact tests</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">brittleness transition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fracturing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">crack size</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fracture mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hall-Petch equation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Griffith equation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">size effect</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mechanical strength</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pearlitic steels</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">suspension bridge cables</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation microstructure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fractal analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">representative volume element</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation structure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation correlations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation avalanches</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanotwin</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanograin</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Au–Cu alloy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">micro-compression</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cu-Zr</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ECAP</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deformation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">quasi-stationary</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">subgrains</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">grains</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">coarsening</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cu–Zr</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ultrafine-grained material</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dynamic recovery</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transient</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">load change tests</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Charpy impact test</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">GMAW</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">additive manufacturing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">secondary cracks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">anisotropy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">linear flow splitting</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">crystal plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DAMASK</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">texture</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EBSD</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">crack tip dislocations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TEM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">grain rotation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fatigue</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation configurations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">residual stress</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">indentation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">serration</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">temperature</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">artificial aging</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">solid solution</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">loading curvature</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">aluminum alloy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">holistic approach</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation group dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dynamic factor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation pile-up</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">yield stress</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation creep</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fatigue crack growth rate</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-264-8</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-265-6</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Armstrong, Ronald W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:54:44 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337928330004498&amp;Force_direct=true</subfield><subfield code="Z">5337928330004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337928330004498</subfield></datafield></record></collection>